University of California at Berkeley Department of Mechanical Engineering

ME 233: Advanced Control Systems II Spring 2016			
URL: http://berkeley-me233.github.io ME233 discusses advanced control methodologies and their applications to engineering systems, including but not limited to: Linear Quadratic Optimal Control, Stochastic State Estimation, Kalman Filters, Linear Quadratic Gaussian Problems, Loop Transfer Recovery, System Identification, Adaptive Control and Model Reference Adaptive Systems, Self Tuning Regulators, Repetitive Control, Disturbance Observers.			
Instructor Teaching Assistant	Tony Kelman Office Hours: Office: Email: Yujia Wu Office Hours: Office: Email:	TBD 5136 Etcheverry Hall kelman@berkeley.edu TBD yujia.wu@berkeley.edu	
LecturesTu, Th 3:30-5:00 in 150 Goldman School of Public PolicyDiscussionW 4:00-5:00 in 3109 Etcheverry Hall			
Grading Scheme	Midterm 1 Midterm 2 Final Exam Homework	 20% (open one page summary sheet) 20% (open one page summary sheet) 40% (open notes) 20% (Group discussion encouraged, but each student must write up homework individually. Indicate with whom, if anyone, you have discussed the homework problems.) 	
Class	ME233 PowerPoint Lectures		
Notes	(These will be made available on the course website)		
	ME233 Class Notes by M. Tomizuka (This can be purchased at Copy Central, 2483 Hearst Avenue)		
Tentative Schedule (Subject to change):			
Week			
1 Dy	Dynamic Programming; Discrete-Time LQ optimal control; Probability Theory—Sample		
2 Dro	hability Theory-Random Processes Correlation Function Spectral Density		
2 FIC	ast Squares Estimation	Squares Estimation: Stochastic State Estimation (Kalman Filter)	
4 Sto	tochastic Estimation, Kalman Filter (continued)		
5 Lin	ar Stochastic Control (Linear Quadratic Gaussian (LQG) Control)		

6 Linear multivariable control; Loop Transfer Recovery

7 Frequency shaped LQ; Midterm Examination I

- 8 Tracking Control; Feedforward and Preview Control
- 9 Internal Model Principle and Repetitive Control
- 10 Disturbance Observer

11 System Identification and Adaptive Control; Midterm Examination II

12 Parameter estimation algorithms

13 Stability analysis of adaptive systems; Minimum Variance Regulation

14 Self-tuning regulators; Robustness of adaptive control systems

References:

Probability

- D. P. Bertsekas, Introduction to Probability, Athena Scientific
- R.D. Yates and D.J. Goodman, *Probability and Stochastic Processes,* second edition, Willey.
- K. Poolla, *Probability Notes.* The PDF file can be downloaded from the ME233 website
- J. Walran, *EECS126 class notes*. The PDF file can be downloaded from the ME233 website

Linear Quadratic Optimal Control

- B.D.O. Anderson and J.B. Moore, *Optimal Control: Linear Quadratic Methods*, Dover Books on Engineering (paperback), 2007. A PDF can be downloaded from: <u>http://users.rsise.anu.edu.au/%7Ejohn/papers/index.html</u>
- Frank L. Lewis, Vassilis L. Syrmos, Optimal Control, Wiley-IEEE, 1995.
- E. Bryson and Y-C. Ho, *Applied Optimal Control: Optimization, Estimation, and Control,* Wiley

Stochastic Control Theory and Optimal Filtering

- R. Grover Brown and P. Hwang, Introduction to Random Signals and Applied Kalman *Filtering,* Third Edition, Willey
- Frank L. Lewis, L. Xie and D. Popa, *Optimal and Robust Estimation,* Second Edition CRC
- M. Grewal and A. Andrews, Kalman Filter, Theory and Practice, Prentice Hall
- B.D.O. Anderson and J.B. Moore, *Optimal Filtering*, Dover Books on Engineering (paperback), New York, 2005. A PDF can be downloaded from: <u>http://users.rsise.anu.edu.au/%7Ejohn/papers/index.html</u>
- K.J. Astrom, *Introduction to Stochastic Control Theory*, Dover Books on Engineering (paperback), New York, 2006.

Adaptive Control

- Astrom, K. J. and Wittenmark, B., *Adaptive Control*, Addison Wesley, 2nd Ed., 1995.
- G.C. Goodwin and K.S. Sin, Adaptive *Filtering Prediction and Control*, Prentice Hall, 1984.
- S. Sastry and M. Bodson, Adaptive Control: Stability, Convergence, and Robustness, Prentice Hall, 1989. (Book can be downloaded from <u>http://www.ece.utah.edu/~bodson/acscr/</u>)
- M. Krstic, I. Kanellakopoulos, and P. V. Kokotovic, *Nonlinear and Adaptive Control Design*, Willey.