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ME 233 Advanced Control II

Lecture 8

Discrete Time

Linear Quadratic Gaussian (LQG)

Optimal Control

(ME233 Class Notes pp.LQG1-LQG7)
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Outline

ÅStochastic optimization

ÅFinite horizon LQG

ïState feedback optimal LQG control

ïOutput feedback optimal LQG control
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Stochastic Control
Linear  system contaminated by noise:
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Two random disturbances:

ÅInput noise w(k) - contaminates the state x(k) 

ÅMeasurement  noise v(k) - contaminates the 

output y(k) 
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Stochastic state model

Where:

Å available output

Å control input

Å Gaussian, uncorrelated, zero mean, input   noise

Å Gaussian, uncorrelated, zero mean, meas. noise

Å Gaussian initial state
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Assumptions (same as for KF)

Å Initial conditions:

Å Noise properties:

Zero-mean

Gaussian

uncorrelated 

noises



Some notation- control and measurements

The control sequence from k to N-1
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The optimal control sequence from k to N-1

The output measurements up to k
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Finite-horizon LQG 

For N > 0 , find the optimal control sequence:

Which minimizes the cost functional:

where                  can only  be based on the observations
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Separation Principle

Main Theorem:

The optimal control is given by:

Where:

ÅThe feedback gain  K(k) is obtained from the 

deterministic LQR solution.

ÅThe state estimate              is the a-posteriori

Kalman Filter state estimate.
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Separation Principle
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Separation Principle Proof

The proof of the separation principle is conducted 

in two steps:

1. Solve the LQG problem under the assumption 

that the state vector            is measurable

2. Solve the LQG problem and show that the 

optimal solution is obtained by replacing               

by the a-posteriori state estimate
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Finite-horizon state feedback LQG

This problem is similar to the standard 

deterministic finite-horizon LQRé

éexcept that there is an additional input noiseé

éand the control            is only allowed to be a 

function of



Functionality constraint on control

ÅThe control u(k) is only allowed to be a 

function of x(0),é,x(k)

ÅWe write this constraint as

ÅWe write the constraints                   

for k=m,é,N-1 as 
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Finite-horizon state feedback LQG 

We want to solve using dynamic programming:

Need 2 preliminary results:

1. Functional optimization

2. Stochastic Bellman equation



Functional optimization

Lemma 1:

Let X be a random vector and let             denote 

the constraint that u is a function of X

Also assume that there exists uo(x) such that

Then
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Functional optimization

Proof is in 2 parts:

1.

2.

15



Proof:

Let uo(x) minimize f(x,u)

u is a function of X

Because



Proof:

ÅLet

ÅMinimizing the right-hand side over         

completes the proof

u is a function of X

This holds, regardless of how              was chosen



Definitions

ÅTerminal cost

ÅStage cost (transient cost) 

ÅOptimal cost to go
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Stochastic Bellman equation

Lemma 2:

If                      for

Then
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Proof:    (m=N-1 case is trivial, and thus omitted)
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Finite-horizon state feedback LQG

Theorem 1: 

a) The optimal control is given by

Standard deterministic LQR solution!
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Theorem 1 : 

b) The optimal cost J o is given by

Finite-horizon state feedback LQG
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Theorem 1 : 

b) The optimal cost is given by

This term reflects the detrimental effect of w(k) on the cost

b(k) is a dynamic function of the noise intensity

b(k) is computed backwards in time with b(N) = 0

Finite-horizon state feedback LQG
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Theorem 1 : 

b) The optimal cost is given by

Finite-horizon state feedback LQG

Deterministic LQR 

cost associated 

with mean of x(0)

Detrimental effect of 

randomness of x(0)

on the cost

Detrimental effect 

of w(0),é,w(k)

on the cost



Proof consists of 2 steps:

1. Prove                                                                 

and                                              using induction 

on decreasing m, Lemma 1, and the stochastic 

Bellman equation (Lemma 2)

2. Prove
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Finite-horizon state feedback LQG



Proof of Theorem 1:     and        .      

Start with base case: m=N
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Proof of Theorem 1:     and        .      

For m=0,1,é,N-1: 

(We use induction on decreasing m)
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By the induction hypothesis,

Term 1

Term 2

Term 3



Proof of Theorem 1:     and        .      
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Term 2

Since x(m) and u(m) only depend on quantities 

that are independent from w(m)

Ax(m) + Bu(m) is independent from w(m)

0



Proof of Theorem 1:     and        .      
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Term 3


