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ME 233 Advanced Control II

Lecture 8

Discrete Time

Linear Quadratic Gaussian (LQG)

Optimal Control

(ME233 Class Notes pp.LQG1-LQG7)
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Outline

• Stochastic optimization

• Finite horizon LQG

– State feedback optimal LQG control

– Output feedback optimal LQG control
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Stochastic Control
Linear  system contaminated by noise:
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Two random disturbances:

• Input noise w(k) - contaminates the state x(k) 

• Measurement  noise v(k) - contaminates the 

output y(k) 
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Stochastic state model

Where:

• available output

• control input

• Gaussian, uncorrelated, zero mean, input   noise

• Gaussian, uncorrelated, zero mean, meas. noise

• Gaussian initial state
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Assumptions (same as for KF)

• Initial conditions:

• Noise properties:

Zero-mean

Gaussian

uncorrelated 

noises



Some notation- control and measurements

The control sequence from k to N-1
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The optimal control sequence from k to N-1

The output measurements up to k
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Finite-horizon LQG 

For N > 0, find the optimal control sequence:

Which minimizes the cost functional:

where                  can only  be based on the observations
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Separation Principle

Main Theorem:

The optimal control is given by:

Where:

• The feedback gain  K(k) is obtained from the 

deterministic LQR solution.

• The state estimate              is the a-posteriori

Kalman Filter state estimate.
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Separation Principle
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Separation Principle Proof

The proof of the separation principle is conducted 

in two steps:

1. Solve the LQG problem under the assumption 

that the state vector            is measurable

2. Solve the LQG problem and show that the 

optimal solution is obtained by replacing               

by the a-posteriori state estimate
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Finite-horizon state feedback LQG

This problem is similar to the standard 

deterministic finite-horizon LQR…

…except that there is an additional input noise…

…and the control            is only allowed to be a 

function of



Functionality constraint on control

• The control u(k) is only allowed to be a 

function of x(0),…,x(k)

• We write this constraint as

• We write the constraints                   

for k=m,…,N-1 as 
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Finite-horizon state feedback LQG 

We want to solve using dynamic programming:

Need 2 preliminary results:

1. Functional optimization

2. Stochastic Bellman equation



Functional optimization

Lemma 1:

Let X be a random vector and let             denote 

the constraint that u is a function of X

Also assume that there exists uo(x) such that

Then
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Functional optimization

Proof is in 2 parts:

1.

2.
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Proof:

Let uo(x) minimize f(x,u)

u is a function of X

Because



Proof:

• Let

• Minimizing the right-hand side over         

completes the proof

u is a function of X

This holds, regardless of how              was chosen



Definitions

• Terminal cost

• Stage cost (transient cost) 

• Optimal cost to go
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Stochastic Bellman equation

Lemma 2:

If                      for

Then
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Proof:    (m=N-1 case is trivial, and thus omitted)



21

Finite-horizon state feedback LQG

Theorem 1: 

a) The optimal control is given by

Standard deterministic LQR solution!
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Theorem 1: 

b) The optimal cost Jo is given by

Finite-horizon state feedback LQG
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Theorem 1: 

b) The optimal cost is given by

This term reflects the detrimental effect of w(k) on the cost

b(k) is a dynamic function of the noise intensity

b(k) is computed backwards in time with b(N) = 0

Finite-horizon state feedback LQG
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Theorem 1: 

b) The optimal cost is given by

Finite-horizon state feedback LQG

Deterministic LQR 

cost associated 

with mean of x(0)

Detrimental effect of 

randomness of x(0)

on the cost

Detrimental effect 

of w(0),…,w(k)

on the cost



Proof consists of 2 steps:

1. Prove                                                                 

and                                              using induction 

on decreasing m, Lemma 1, and the stochastic 

Bellman equation (Lemma 2)

2. Prove
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Finite-horizon state feedback LQG



Proof of Theorem 1:     and        .      

Start with base case: m=N
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Proof of Theorem 1:     and        .      

For m=0,1,…,N-1: 

(We use induction on decreasing m)
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By the induction hypothesis,

Term 1

Term 2

Term 3



Proof of Theorem 1:     and        .      
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Term 2

Since x(m) and u(m) only depend on quantities 

that are independent from w(m)

Ax(m) + Bu(m) is independent from w(m)

0



Proof of Theorem 1:     and        .      
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Term 3



Proof of Theorem 1:     and        .      

Therefore
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Proof of Theorem 1:     and        .      
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Now use stochastic Bellman equation



Proof of Theorem 1:     and        .      
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• Use Lemma 1 to exchange min and E

• b(m) does not depend on u(m)



Proof of Theorem 1:     and        .      
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This is the same optimization we 

solved for deterministic LQR!

Optimal value: 



Proof consists of 2 steps:

1. Prove                                                                 

and                                              using induction 

on decreasing m, Lemma 1, and the stochastic 

Bellman equation (Lemma 2)

2. Prove
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Finite-horizon state feedback LQG
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Proof:

0
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Proof: (cont’d)
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Separation Principle Proof

The proof of the separation principle is conducted 

in two steps:

1. Solve the LQG problem under the assumption 

that the state vector            is measurable

2. Solve the LQG problem and show that the 

optimal solution is obtained by replacing               

by the a-posteriori state estimate
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Finite-horizon LQG

This problem is similar to the standard 

deterministic finite-horizon LQR…

…except that there is an additional input noise…

…and the control            is only allowed to be a 

function of



Functionality constraint on control

• The control u(k) is only allowed to be a 

function of y(0),…,y(k)

• As before, we write this constraint as

• As before, we write the constraints                   

for k=m,…,N-1 as 
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Finite-horizon LQG 

We want to solve:

We will relate this to an optimal 

state feedback LQG control problem

For simplicity, assume S = 0



Reformulation of LQG

• Examine 
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0 (by LS property 1)



Reformulation of LQG

• Therefore,

• Similarly,

• Want to apply these identities to LQG
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(Recall that we assumed S = 0)



Reformulation of LQG
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Reformulation of LQG
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Terms 

minimized by 

the Kalman

filter

We will show that this corresponds to a 

state feedback LQG control problem



• From the Kalman filter :

• Recall that                 is uncorrelated and 

Reformulation of LQG
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Reformulation of LQG
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Initial conditions:

Notate this as 



Reformulation of LQG
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Initial conditions:

Correlation of          with                   :



Reformulation of LQG
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Want to solve:

u(k) is a function of

u(k) is a function of

(because                                      are functions of      )

u(k) is a function of

(because                                      , i.e. knowledge of        does not 

give any “information” about                   by LS property 1 ) 



Reformulation of LQG
49

Want to solve:

u(k) is a function of

This is a state feedback LQG control problem!

Apply results from first half of lecture

Uncorrelated with
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Optimal finite-horizon LQG, S=0

Main Theorem: 

a) The optimal control is given by

Standard deterministic LQR solution!
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Optimal finite-horizon LQG, S=0

A-posteriori state observer structure:

Main Theorem: 



52

Optimal finite-horizon LQG, S=0
Main Theorem: 

b) The optimal cost is given by



State space form of LQG controller
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Kalman

filter

LQR

Plugging this expression for uo(k) into the expression for

yields the state space model on the next slide

Eliminating            from the expression for uo(k) yields



State space form of LQG controller
54

where

K(k+1) is the standard deterministic LQR gain

F(k) and L(k) are the standard Kalman filter gains


