ME 233 Advanced Control II

1

Lecture 8 Discrete Time Linear Quadratic Gaussian (LQG) Optimal Control

(ME233 Class Notes pp.LQG1-LQG7)

Outline

- Stochastic optimization
- Finite horizon LQG
	- State feedback optimal LQG control
	- Output feedback optimal LQG control

Two random disturbances:

- Input noise $w(k)$ contaminates the state $x(k)$
- Measurement noise $v(k)$ contaminates the output *y(k)*

Stochastic state model $x(k+1) = Ax(k) + Bu(k) + B_w w(k)$

$$
y(k) = Cx(k) + v(k)
$$

Where:

- $y(k)$ available output
- $u(k)$ control input
- $w(k)$ Gaussian, uncorrelated, zero mean, input noise
- $v(k)$ Gaussian, uncorrelated, zero mean, meas. noise
- $x(0)$ Gaussian initial state

Assumptions (same as for KF)

• Initial conditions:

$$
E\{x(0)\} = x_o \quad E\{\tilde{x}^o(0)\tilde{x}^{oT}(0)\} = X_o
$$

Noise properties:

 $E{\{\tilde{x}^o(0)w^T(k)\}}=0$ $E{\{\tilde{x}^{o}(0)v^{T}(k)\}}=0$

Some notation- control and measurements

The control sequence **from** *k* **to** *N-1*

$$
U_k = \big(u(k),\, u(k+1),\, \cdots,\, u(N-1)\big)
$$

The optimal control sequence **from** *k* **to** *N-1*

$$
U_k^o = \left(u^o(k),\, u^o(k+1),\, \cdots,\, u^o(N-1)\right)
$$

The output measurements **up to** *k*

$$
Y_k = \big(y(0), y(1), \ldots, y(k)\big)
$$

Finite-horizon LQG

For $N > 0$, find the optimal control sequence:

$$
U_0^o = \left(u^o(0),\, u^o(1),\, \cdots,\, u^o(N-1)\right)
$$

Which minimizes the cost functional:

$$
J = E\left\{x^T(N)Q_f x(N) + \sum_{k=0}^{N-1} \left(\begin{bmatrix} x(k) \\ u(k) \end{bmatrix}^T \begin{bmatrix} Q & S \\ S^T & R \end{bmatrix} \begin{bmatrix} x(k) \\ u(k) \end{bmatrix} \right) \right\}
$$

where $u^{\circ}(k)$ can only be based on the observations

$$
Y_k=\big(y(0),\,\,y(1),\,\,\ldots,\,\,y(k)\big)
$$

Separation Principle

Main Theorem:

The optimal control is given by:

$$
u^o(k) = -K(k+1)\,\hat{x}(k)
$$

Where:

- The feedback gain *K(k)* is obtained from the deterministic LQR solution.
- The state estimate $\hat{x}(k)$ is the **a-posteriori** Kalman Filter state estimate.

Separation Principle

Separation Principle Proof

The proof of the separation principle is conducted in two steps:

- 1. Solve the LQG problem under the assumption that the state vector $x(k)$ is measurable
- 2. Solve the LQG problem and show that the optimal solution is obtained by replacing $x(k)$ by the a-posteriori state estimate $\hat{x}(k)$

This problem is similar to the standard deterministic finite-horizon LQR…

$$
x(k + 1) = A x(k) + B u(k) + B_w w(k)
$$

...except that there is an additional input noise...
...and the control $u(k)$ is only allowed to be a
function of

$$
x(0),\;\ldots,\;x(k)
$$

Functionality constraint on control

- The control $u(k)$ is only allowed to be a function of *x(0),…,x(k)*
- We write this constraint as

 $u(k) \in \underline{u}(k)$

• We write the constraints $u(k) \in \underline{u}(k)$ for *k=m,…,N-1* as

$$
U_m \in \underline{U}_m
$$

We want to solve using dynamic programming:

$$
J^{o} = \min_{U_{0} \in \underline{U}_{0}} E\left\{ x^{T}(N)Q_{f}x(N) + \sum_{k=0}^{N-1} \left(\begin{bmatrix} x(k) \\ u(k) \end{bmatrix}^{T} \begin{bmatrix} Q & S \\ S^{T} & R \end{bmatrix} \begin{bmatrix} x(k) \\ u(k) \end{bmatrix} \right) \right\}
$$

Need 2 preliminary results:

- 1. Functional optimization
- 2. Stochastic Bellman equation

Functional optimization

Lemma 1:

Let *X* be a random vector and let $u \in \underline{u}$ denote the constraint that *u* is a function of *X*

Also assume that there exists $u^o(x)$ such that

$$
\min_{u} f(x, u) = f(x, u^{o}(x)), \quad \forall x
$$

Then $\min_{u \in u} E\left\{f(X, u)\right\} = E\left\{\min_{u} f(X, u)\right\}$

Functional optimization

$$
\min_{u \in \underline{u}} E\left\{f(X, u)\right\} = E\left\{\min_{u} f(X, u)\right\}
$$

Proof is in 2 parts:

$$
1. \quad \min_{u \in \underline{u}} E\left\{f(X, u)\right\} \le E\left\{\min_{u} f(X, u)\right\}
$$

2.
$$
\min_{u \in \underline{u}} E\left\{f(X, u)\right\} \ge E\left\{\min_{u} f(X, u)\right\}
$$

$$
\min_{u \in \underline{u}} E\left\{f(X, u)\right\} \leq E\left\{\min_{u} f(X, u)\right\}
$$
\nProof:
\nLet $u^o(x)$ minimize $f(x, u)$
\n
$$
\min_{u} f(x, u) = f(x, u^o(x)), \forall x
$$
\n
$$
\implies \min_{u} f(X, u) = f(X, u^o(X))
$$
\n
$$
\implies E\left\{\min_{u} f(X, u)\right\} = E\left\{f(X, u^o(X))\right\}
$$
\n
$$
\geq \min_{u \in \underline{u}} E\left\{f(X, u)\right\}
$$
\nBecause $u^o \in \underline{u}$

 $\min_{u \in \underline{u}} E\left\{f(X, u)\right\} \ge E\left\{\min_{u} f(X, u)\right\}$ *u* is a function of *X* **Proof:**

• Let $\bar{u} \in u$

$$
\Rightarrow \min_{u} f(x, u) \le f(x, \bar{u}(x)), \forall x
$$

$$
\Rightarrow \min_{u} f(X, u) \le f(X, \bar{u}(X))
$$

$$
\Rightarrow E\left\{\min_{u} f(X, u)\right\} \le E\{f(X, \bar{u}(X))\}
$$

This holds, regardless of how $\bar{u} \in \underline{u}$ was chosen

• Minimizing the right-hand side over $\bar{u} \in \underline{u}$ completes the proof

Definitions

• Terminal cost

$$
L_f[x(N)] = x^T(N)Q_f x(N)
$$

- Stage cost (transient cost)
 $L[x(k), u(k)] = \begin{bmatrix} x(k) \\ u(k) \end{bmatrix}^T \begin{bmatrix} Q & S \\ S^T & R \end{bmatrix} \begin{bmatrix} x(k) \\ u(k) \end{bmatrix}$
- Optimal cost to go $J_N^o = E\{L_f[x(N)]\}$ $J_m^o = \min_{U_m \in \underline{U}_m} E\left\{L_f[x(N)] + \sum_{k=m}^{N-1} L[x(k), u(k)]\right\}$ $m = 0, \ldots, N-1$

Stochastic Bellman equation

Lemma 2:

$$
\text{If } u(k) \in \underline{u}(k) \text{ for } k = 0, \dots, m-1
$$

Then

$$
J_m^o = \min_{u(m) \in \underline{u}(m)} \left(E\{L[x(m), u(m)]\} + J_{m+1}^o \right)
$$

$$
m = 0, \dots, N-1
$$

 $J_m^o = \min_{u(m) \in u(m)} (E\{L[x(m), u(m)]\} + J_{m+1}^o)$

Theorem 1:

a) The optimal control is given by

$$
u^{o}(k) = -K(k+1) x(k)
$$

\n
$$
K(k+1) = [B^{T} P(k+1)B + R]^{-1} [B^{T} P(k+1)A + S^{T}]
$$

\n
$$
P(k-1) = A^{T} P(k)A + Q
$$

\n
$$
- [A^{T} P(k)B + S][B^{T} P(k)B + R]^{-1} [B^{T} P(k)A + S^{T}]
$$

\n
$$
P(N) = Q_{f}
$$

Standard deterministic LQR solution!

Theorem 1:

 $\sqrt{ }$

b) The optimal cost *J^o* is given by

$$
J^{o} = x_{o}^{T} P(0)x_{o} + \text{trace}[P(0)X_{o}] + b(0)
$$

\n
$$
x_{o} = E\{x(0)\}
$$

\n
$$
X_{o} = E\{\tilde{x}^{o}(0)\tilde{x}^{oT}(0)\}
$$

\n
$$
b(k) = b(k+1) + \text{trace}[B_{w}^{T} P(k+1)B_{w} W(k)]
$$

\n
$$
b(N) = 0
$$

Theorem 1:

b) The optimal cost is given by

$$
J^o = x_o^T P(0)x_o + \text{trace}[P(0)X_o] + b(0)
$$

b(k) is a dynamic function of the noise intensity b(*k*) *is computed backwards in time with* $\boldsymbol{b(N)} = 0$ $b(k) = b(k + 1) + \text{trace}\left[B_w^T P(k + 1)B_w W(k)\right]$ *This term reflects the detrimental effect of w(k) on the cost*

Theorem 1:

b) The optimal cost is given by

$$
J^o = \boxed{x_o^T P(0) x_o} + \boxed{\text{trace}[P(0)X_o]} + \boxed{b(0)}
$$

Deterministic LQR cost associated with mean of *x*(*0*)

Detrimental effect of randomness of *x*(*0*) on the cost

Detrimental effect of $w(0), \ldots, w(k)$ on the cost

Proof consists of 2 steps:

Prove $J_m^o = E\{x^T(m)P(m)x(m)\} + b(m)$ and $u^o(k) = -K(k+1)x(k)$ using induction on decreasing *m*, Lemma 1, and the stochastic Bellman equation (Lemma 2)

2. Prove

 $E\{x^T(0) P(0)x(0)\} = x_0^T P(0)x_0 + \text{trace}[P(0)X_0]$

$$
x_0 = E\{x(0)\}\
$$

$$
X_0 = E\{(x(0) - x_0)(x(0) - x_0)^T\}
$$

Start with base case: *m=N*

$$
J_m^o = E\{L_f[x(N)]\}
$$

$$
= E\{x^T(N)Q_fx(N)\} + 0
$$

$$
P(N) \qquad b(N)
$$

 $= E\{x^T(N)P(N)x(N)\} + b(N)$

For *m=0,1,…,N-1*:

(We use induction on decreasing *m*)

By the induction hypothesis,

$$
J_{m+1}^{o} = E\{x^{T}(m+1)P(m+1)x(m+1)\} + b(m+1)
$$

$$
(Ax(m) + Bu(m)) + B_{w}w(m)
$$

$$
J_{m+1}^{o} = E\left\{ \left(Ax(m) + Bu(m) \right)^{T} P(m+1) \left(Ax(m) + Bu(m) \right) \right\} \leftarrow \text{Term 1}
$$

+2E\left\{ \left(Ax(m) + Bu(m) \right)^{T} P(m+1) B_{w} w(m) \right\} \leftarrow \text{Term 2}
+E\left\{ w^{T}(m) B_{w}^{T} P(m+1) B_{w} w(m) \right\} + b(m+1) \leftarrow \text{Term 3}

$$
2E\left\{\big(Ax(m)+Bu(m)\big)^T P(m+1)B_w w(m)\right\} \leftarrow
$$
 Term 2

Since *x*(*m*) and *u*(*m*) only depend on quantities that are independent from *w*(*m*)

 $Ax(m) + Bu(m)$ is independent from $w(m)$

$$
2E\left\{\left(Ax(m) + Bu(m)\right)^T P(m+1)B_w w(m)\right\}
$$

=
$$
2E\left\{\left(Ax(m) + Bu(m)\right)^T\right\} P(m+1)B_w E\left\{w(m)\right\}
$$

= 0

Proof of Theorem 1: J_m^o and $u^o(m)$ $E\{w^T(m)B_w^T P(m+1)B_w w(m)\} + b(m+1)$ \longleftarrow Term 3

$$
= \text{trace}\left[E\left\{B_w^T P(m+1)B_w w(m)w^T(m)\right\}\right] + b(m+1)
$$

$$
= \operatorname{trace}\left[B_w^T P(m+1) B_w E\left\{w(m) w^T(m)\right\}\right] + b(m+1)
$$

W(m)

 $= b(m)$

Proof of Theorem 1:
$$
J_m^o
$$
 and $u^o(m)$

Therefore

$$
J_{m+1}^{o} = E \left\{ \left(Ax(m) + Bu(m) \right)^{T} P(m+1) \left(Ax(m) + Bu(m) \right) \right\} + b(m)
$$

$$
= E\left\{ \begin{bmatrix} x(m) \\ u(m) \end{bmatrix}^T \begin{bmatrix} A^T \\ B^T \end{bmatrix} P(m+1) \begin{bmatrix} A & B \end{bmatrix} \begin{bmatrix} x(m) \\ u(m) \end{bmatrix} \right\} + b(m)
$$

$$
J_{m+1}^o = E\left\{ \begin{bmatrix} x(m) \\ u(m) \end{bmatrix}^T \begin{bmatrix} A^T \\ B^T \end{bmatrix} P(m+1) \begin{bmatrix} A & B \end{bmatrix} \begin{bmatrix} x(m) \\ u(m) \end{bmatrix} \right\} + b(m)
$$

Now use stochastic Bellman equation

$$
J_m^o = \min_{u(k)\in\underline{u}(k)} \left[E\{L[x(m), u(m)]\} + J_{m+1}^o \right]
$$

$$
E\left\{ \begin{bmatrix} x(m) \\ u(m) \end{bmatrix}^T \begin{bmatrix} Q & S \\ S^T & R \end{bmatrix} \begin{bmatrix} x(m) \\ u(m) \end{bmatrix} + \begin{bmatrix} x(m) \\ u(m) \end{bmatrix}^T \begin{bmatrix} A^T \\ B^T \end{bmatrix} P(m+1) \begin{bmatrix} A & B \end{bmatrix} \begin{bmatrix} x(m) \\ u(m) \end{bmatrix} \right\} + b(m)
$$

$$
= E\left\{ \begin{bmatrix} x(m) \\ u(m) \end{bmatrix}^T \left(\begin{bmatrix} Q & S \\ S^T & R \end{bmatrix} + \begin{bmatrix} A^T \\ B^T \end{bmatrix} P(m+1) \begin{bmatrix} A & B \end{bmatrix} \right) \begin{bmatrix} x(m) \\ u(m) \end{bmatrix} \right\} + b(m)
$$

$$
J_m^o = \min_{u(m)\in\underline{u}(m)} \left[b(m) \left[b(m) \frac{1}{\left[a(m) \right]^T} \left(\begin{bmatrix} Q & S \\ S^T & R \end{bmatrix} + \begin{bmatrix} A^T \\ B^T \end{bmatrix} P(m+1) \begin{bmatrix} A & B \end{bmatrix} \right) \begin{bmatrix} x(m) \\ u(m) \end{bmatrix} \right\}
$$

• *b*(*m*) does not depend on *u*(*m*) $\int \Gamma_{\alpha}(\mu) dT / \Gamma$ Ω Ω Γ Λ T]

$$
=b(m) + \min_{u(m)\in\underline{u}(m)} E\left\{ \begin{bmatrix} x(m) \\ u(m) \end{bmatrix}^T \left(\begin{bmatrix} Q & S \\ S^T & R \end{bmatrix} + \begin{bmatrix} A^T \\ B^T \end{bmatrix} P(m+1) \begin{bmatrix} A & B \end{bmatrix} \right) \begin{bmatrix} x(m) \\ u(m) \end{bmatrix} \right\}
$$

• Use Lemma 1 to exchange min and *E*

$$
=b(m)+E\left\{\min_{u(m)}\left(\begin{bmatrix}x(m)\\u(m)\end{bmatrix}^T\left(\begin{bmatrix}Q&S\\S^T&R\end{bmatrix}+\begin{bmatrix}A^T\\B^T\end{bmatrix}P(m+1)\begin{bmatrix}A&B\end{bmatrix}\right)\begin{bmatrix}x(m)\\u(m)\end{bmatrix}\right)\right\}
$$

$$
J_m^o = b(m)
$$

+E $\left\{ \min_{u(m)} \left(\begin{bmatrix} x(m) \\ u(m) \end{bmatrix}^T \left(\begin{bmatrix} Q & S \\ S^T & R \end{bmatrix} + \begin{bmatrix} A^T \\ B^T \end{bmatrix} P(m+1) \begin{bmatrix} A & B \end{bmatrix} \right) \begin{bmatrix} x(m) \\ u(m) \end{bmatrix} \right) \right\}$
This is the same optimization we solved for deterministic LQR!
Optimal value: $x^T(m)P(m)x(m)$
 $u^o(m) = -[B^T P(m+1)B + R]^{-1}[B^T P(m+1)A + S^T]x(m)$
 $\implies J_m^o = b(m) + E\{x^T(m)P(m)x(m)\}$

Proof consists of 2 steps:

1. Prove $J_m^o = E\{x^T(m)P(m)x(m)\} + b(m)$ and $u^o(k) = -K(k+1)x(k)$ using induction on decreasing *m*, Lemma 1, and the stochastic Bellman equation (Lemma 2)

Prove

 $E\{x^T(0)P(0)x(0)\}=x_0^TP(0)x_0+trace[P(0)X_0]$

$$
x_0 = E\{x(0)\}\
$$

$$
X_0 = E\{(x(0) - x_0)(x(0) - x_0)^T\}
$$

 $E\{x^T(0) P(0)x(0)\} = x_0^T P(0)x_0 + \text{trace}[P(0)X_0]$

Proof:

$$
(x(0) - x_0) + x_0
$$

$$
E\{x^T(0) P(0) x(0)\}\
$$

$$
= E\{(x(0) - x_0)^T P(0)(x(0) - x_0)\}
$$

$$
+x_0^T P(0)x_0 + 2E\{(x(\theta) - x_0)^T\}P(0)x_0
$$

 $= x_0^T P(0)x_0 + \text{trace} \Big[E\{P(0)(x(0) - x_0)(x(0) - x_0)^T\} \Big]$

 $E\{x^T(0) P(0)x(0)\} = x_0^T P(0)x_0 + \text{trace}[P(0)X_0]$

Proof: (cont'd) $E\{x^T(0) P(0) x(0)\}\$

$$
= x_0^T P(0)x_0 + \text{trace} \Big[E\{P(0)(x(0) - x_0)(x(0) - x_0)^T\} \Big]
$$

$$
P(0)E\{(x(0) - x_0)^T(x(0) - x_0)\}
$$

$$
= P(0)X_0
$$

Separation Principle Proof

The proof of the separation principle is conducted in two steps:

- 1. Solve the LQG problem under the assumption that the state vector $x(k)$ is measurable
- 2. Solve the LQG problem and show that the optimal solution is obtained by replacing $x(k)$ by the a-posteriori state estimate $\hat{x}(k)$

Finite-horizon LQG

This problem is similar to the standard deterministic finite-horizon LQR…

$$
x(k + 1) = Ax(k) + Bu(k) + B_w w(k)
$$

...except that there is an additional input noise...

…and the control $u(k)$ is only allowed to be a function of

$$
Y_k = \big(y(0), \ \ldots, \ y(k)\big)
$$

Functionality constraint on control

- The control $u(k)$ is only allowed to be a function of *y(0),…,y(k)*
- As before, we write this constraint as $u(k) \in \underline{u}(k)$
- As before, we write the constraints $u(k) \in \underline{u}(k)$ for *k=m,…,N-1* as

$$
U_m \in \underline{U}_m
$$

Finite-horizon LQG

We want to solve:

$$
J^{o} = \min_{U_{0} \in \underline{U}_{0}} E\left\{ x^{T}(N)Q_{f}x(N) + \sum_{k=0}^{N-1} \left(\begin{bmatrix} x(k) \\ u(k) \end{bmatrix}^{T} \begin{bmatrix} Q & S \\ S^{T} & R \end{bmatrix} \begin{bmatrix} x(k) \\ u(k) \end{bmatrix} \right) \right\}
$$

We will relate this to an optimal state feedback LQG control problem

For simplicity, assume *S = 0*

- Examine $E\{x^T(k)Qx(k)\}$ $(x(k) - \hat{x}(k)) + \hat{x}(k)$ $=\tilde{x}(k)+\hat{x}(k)$
- $E\{x^T(k)Qx(k)\}=E\{\hat{x}^T(k)Q\hat{x}(k)\}+E\{\tilde{x}^T(k)Q\tilde{x}(k)\}$ $+2E\{\tilde{x}^T(k)Q\hat{x}(k)\}\$

 $= E\{\hat{x}^T(k)Q\hat{x}(k)\} + \text{trace}\left[QE\{\tilde{x}(k)\tilde{x}^T(k)\}\right]$ $Z(k)$ $+2\textrm{trace}\left[QE\left(\hat{x}(k)\tilde{x}^{T}(k)\right)\right]$ 0 (by LS property 1)

• Therefore,

 $E\{x^T(k)Qx(k)\}=E\{\hat{x}^T(k)Q\hat{x}(k)\}$ +trace $[QZ(k)]$

• Similarly,

 $E\{x^T(N)Q_f x(N)\} = E\{\hat{x}^T(N)Q_f \hat{x}(N)\} + \text{trace}\left[Q_f Z(N)\right]$

• Want to apply these identities to LQG

$$
J^{o} = \min_{U_{0} \in \underline{U}_{0}} E\left\{ x^{T}(N)Q_{f}x(N) + \sum_{k=0}^{N-1} \left(x^{T}(k)Qx(k) + u^{T}(k)Ru(k) \right) \right\}
$$

(Recall that we assumed S = 0)

$$
J^{o} = \min_{U_{0} \in \underline{U}_{0}} E\left\{ x^{T}(N)Q_{f}x(N) + \sum_{k=0}^{N-1} \left(x^{T}(k)Qx(k) + u^{T}(k)Ru(k) \right) \right\}
$$

$$
= \min_{U_0 \in U_0} \left(E \left\{ \hat{x}^T(N) Q_f \, \hat{x}(N) + \sum_{k=0}^{N-1} \left(\hat{x}^T(k) Q \hat{x}(k) + u^T(k) R u(k) \right) \right\}
$$

+ trace $\left[Q_f Z(N) \right] + \sum_{k=0}^{N-1} \text{trace} \left[Q Z(k) \right]$

$$
= \operatorname{trace}\left[Q_f Z(N)\right] + \sum_{k=0}^{N-1} \operatorname{trace}\left[Q Z(k)\right]
$$

+
$$
\min_{U_0 \in \underline{U}_0} E\left\{\hat{x}^T(N)Q_f \hat{x}(N) + \sum_{k=0}^{N-1} \left(\hat{x}^T(k)Q\hat{x}(k) + u^T(k)Ru(k)\right)\right\}
$$

$$
J^{o} = \left[\operatorname{trace} \left[Q_{f} Z(N) \right] + \sum_{k=0}^{N-1} \operatorname{trace} \left[Q Z(k) \right] \right] \cdot \prod_{t=0}^{N}
$$

Terms minimized by the Kalman filter

$$
+\left[\min_{U_0\in\underline{U}_0}E\left\{\hat{x}^T(N)Q_f\,\hat{x}(N)+\sum_{k=0}^{N-1}\left(\hat{x}^T(k)Q\hat{x}(k)+u^T(k)Ru(k)\right)\right\}\right]
$$

We will show that this corresponds to a state feedback LQG control problem

• From the Kalman filter :

$$
\hat{x}(k+1) = \hat{x}^o(k+1) + F(k+1)\tilde{y}^o(k+1)
$$

= $A\hat{x}(k) + Bu(k) + F(k+1)\tilde{y}^o(k+1)$

• Recall that $\tilde{y}^o(k+1)$ is uncorrelated and

$$
\Lambda_{\tilde{y}^o\tilde{y}^o}(k,j) = (CM(k)C^T + V(k))\delta(j)
$$

$$
\hat{x}(k+1) = A\hat{x}(k) + Bu(k) + F(k+1)\tilde{y}^o(k+1)
$$

Initial conditions: $\hat{x}(0) = x_0 + F(0)\tilde{y}^o(0)$ $E\{\hat{x}(0)\}=x_0$

$$
\Lambda_{\hat{x}(0)\hat{x}(0)} = E\{F(0)\tilde{y}^o(0)\tilde{y}^{oT}(0)F^T(0)\}
$$

= $F(0)[CM(0)C^T + V(0)]F^T(0)$
= $M(0)C^T[CM(0)C^T + V(0)]^{-1}CM(0)$
Notate this as \bar{X}_0

$$
\hat{x}(k+1) = A\hat{x}(k) + Bu(k) + F(k+1)\tilde{y}^o(k+1)
$$

Initial conditions: $\hat{x}(0) = x_0 + F(0)\tilde{y}^o(0)$ $E\{\hat{x}(0)\}=x_0$

Correlation of $\hat{x}(0)$ with $\tilde{y}^o(k+1)$:

$$
\Lambda_{\hat{x}(0)\tilde{y}^0(k+1)} = E\{F(0)\tilde{y}^0(0)\tilde{y}^{0T}(k+1)\}
$$

$$
= 0, \quad \forall k \ge 0
$$

Want to solve:
\n
$$
\min_{U_0 \in \underline{U}_0} E\left\{\hat{x}^T(N)Q_f \hat{x}(N) + \sum_{k=0}^{N-1} (\hat{x}^T(k)Q\hat{x}(k) + u^T(k)Ru(k))\right\}
$$
\n
$$
\hat{x}(k+1) = A\hat{x}(k) + Bu(k) + F(k+1)\tilde{y}^o(k+1)
$$

 $U_0 \in U_0 \longrightarrow u(k)$ is a function of Y_k

- \rightarrow *u(k)* is a function of Y_k , $\hat{x}(0)$, $\hat{x}(1)$, ..., $\hat{x}(k)$ *(because* $\hat{x}(0), \hat{x}(1), \ldots, \hat{x}(k)$ *are functions of* Y_k *)*
- $u(k)$ is a function of $\hat{x}(0), \hat{x}(1), \ldots, \hat{x}(k)$ *(because* $E\{\tilde{y}^o(k+1)|Y_k\} = 0$, *i.e. knowledge of* Y_k does not *give any "information" about* $\tilde{y}^o(k+1)$ by LS property 1)

Want to solve:

\n
$$
\min_{U_0 \in \underline{U}_0} E\left\{\hat{x}^T(N)Q_f\hat{x}(N) + \sum_{k=0}^{N-1} (\hat{x}^T(k)Q\hat{x}(k) + u^T(k)Ru(k))\right\}
$$
\n
$$
u(k) \text{ is a function of } \hat{x}(0), \hat{x}(1), \dots, \hat{x}(k)
$$
\n
$$
\hat{x}(k+1) = A\hat{x}(k) + Bu(k) + F(k+1)\tilde{y}^o(k+1)
$$
\n
$$
E\{\hat{x}(0)\} = x_0
$$
\nUncorrelated with $\hat{x}(0)$

\n
$$
\Lambda_{\hat{x}(0)\hat{x}(0)} = \bar{X}_0
$$

This is a state feedback LQG control problem! \Rightarrow Apply results from first half of lecture

Optimal finite-horizon LQG, *S=0* **Main Theorem:**

a) The optimal control is given by

$$
u^{O}(k) = -K(k+1)\hat{x}(k)
$$

\n
$$
K(k+1) = [B^{T}P(k+1)B + R]^{-1}B^{T}P(k+1)A
$$

\n
$$
P(k-1) = A^{T}P(k)A + Q
$$

\n
$$
-A^{T}P(k)B[B^{T}P(k)B + R]^{-1}B^{T}P(k)A
$$

\n
$$
P(N) = Q_{f}
$$

Standard deterministic LQR solution!

Optimal finite-horizon LQG,
$$
S=0
$$

Main Theorem: $u^{o}(k) = -K(k+1)\hat{x}(k)$

A-posteriori state observer structure:

$$
\begin{array}{rcl}\n\widehat{x}(k) & = & \widehat{x}^0(k) + F(k)\,\widetilde{y}^0(k) \\
\widehat{x}^0(k+1) & = & A\,\widehat{x}(k) + B\,u(k) \\
\widetilde{y}^0(k) & = & y(k) - C\,\widehat{x}^0(k)\n\end{array}
$$

$$
F(k) = M(k)CT [C M(k)CT + V(k)]-1
$$

$$
M(k+1) = AM(k)AT + BwW(k)BwT
$$

$$
- AM(k)CT [CM(k)CT + V(k)]-1 CM(k)AT
$$

Optimal finite-horizon LQG, *S=0* **Main Theorem:**

b) The optimal cost J^O is given by

$$
J^{o} = \text{trace} [Q_{f} Z(N)] + \sum_{k=0}^{N-1} \text{trace} [Q Z(k)]
$$

+ $x_{0}^{T} P(0) x_{0} + \text{trace} [P(0) \bar{X}_{0}] + b(0)$

$$
x_o = E\{x(0)\}\
$$

$$
\bar{X}_0 = X_0 C^T [CX_0 C^T + V(0)]^{-1} C X_0
$$

$$
b(k) = b(k + 1)
$$

+trace $\left[F^{T}(k+1)P(k+1)F(k+1) \left(CM(k+1)C^{T} + V(k+1) \right) \right]$
 $b(N) = 0$

State space form of LQG controller

$$
\hat{x}^o(k+1) = [A - L(k)C]\hat{x}^o(k) + Bu(k) + L(k)y(k)
$$
\n
$$
\hat{x}(k) = [I - F(k)C]\hat{x}^o(k) + F(k)y(k)
$$
\n
$$
u^o(k) = -K(k+1)\hat{x}(k)
$$
\n\nLQR

Eliminating $\hat{x}(k)$ from the expression for $u^o(k)$ yields

 $u^{o}(k) = -K(k+1)[I - F(k)C]\hat{x}^{o}(k) - K(k+1)F(k)y(k)$

Plugging this expression for $u^o(k)$ into the expression for $\hat{x}^o(k+1)$ yields the state space model on the next slide

State space form of LQG controller

$$
\hat{x}^o(k+1) = A_c(k)\hat{x}^o(k) + B_c(k)y(k)
$$

$$
u^o(k) = C_c(k)\hat{x}^o(k) + D_c(k)y(k)
$$

where

$$
A_c(k) = A - L(k)C - BK(k+1) + BK(k+1)F(k)C
$$

\n
$$
B_c(k) = L(k) - BK(k+1)F(k)
$$

\n
$$
C_c(k) = -K(k+1) + K(k+1)F(k)C
$$

\n
$$
D_c(k) = -K(k+1)F(k)
$$

K(*k+1*) is the standard deterministic LQR gain *F*(*k*) and *L*(*k*) are the standard Kalman filter gains