ME 233 Advanced Control II

1

Lecture 7 Discrete Time Kalman Filter

(ME233 Class Notes pp.KF1-KF6)

Course Outline

• Unit 0: Probability

- Unit 1: State-space control, estimation
- Unit 2: Input/output control
- Unit 3: Adaptive control

Finishe

d

Wiener Filtering

Norbert Wiener:

- Well-known as the founder of cybernetics, a field he developed in the 1970s that emphasized the modeling of humans as communication and control systems.
- In 1942 he did significant work in the use of time series for military applications; an example of which would be the prediction of the location of enemy planes at the next time step.
- His work in filtering, prediction and smoothing came about in 1949. Wiener filtering is solved for Gaussian time series and under certain assumptions, stationary time series.

Rudy Kalman:

- First major contribution was the introduction of the selftuning regulator in adaptive control.
- Between 1959 and 1964 he wrote a series of seminal papers:
 - First, the new approach to the filtering problem, known today as Kalman Filtering
 - In the meantime, the all pervasive concept of controllability and its dual, the concept of observability, were formulated.
- By combining the filtering and the control ideas, the first systematic theory for control synthesis, known today as the Linear-Quadratic-Gaussian or LQG theory, resulted.

Deterministic - state feedback

State variable feedback:

$$x(k+1) = Ax(k) + Bu(k)$$
$$u(k) = -Kx(k) + r(k)$$

With fictitious reference input r(k)

$$r(k) = r_o = 0$$

Deterministic - state feedback

• ME 232 Approach: State Variable Feedback

• What happens if the state is not directly measurable – only the output y(k)?

Deterministic-state estimation

• ME 232 Approach: State observer

Deterministic- state observer feedback

Stochastic State Estimation

System is now contaminated by noise

Two random disturbances

Stochastic State Estimation

System is now contaminated by noise

• Input noise w(k) - contaminates the state

 \Rightarrow x(k) is now a random sequence

Stochastic State Estimation

System is now contaminated by noise

Measurement noise v(k) - contaminates the output y(k)

Stochastic state model

$$x(k+1) = Ax(k) + Bu(k) + B_w w(k)$$
$$y(k) = Cx(k) + v(k)$$

Where:

- u(k) known control input
- w(k) input noise
- v(k) measurement noise

Initial Conditions

• x(0) is Gaussian with <u>known</u> marginal mean and covariance:

$$E\{x(0)\} = x_o$$

$$\Lambda_{xx}(0,0) = X_o$$

Noises

w(k) and v(k) are:

- <u>Gaussian</u> zero mean uncorrelated noises / Not necessarily stationary
- independent from each other and from x(0)

Noises

 $E\{w(k)\} = 0$ $E\{v(k)\} = 0$

$$\Lambda_{ww}(k,l) = E\{w(k+l)w^{T}(k)\} = W(k)\,\delta(l)$$
$$\Lambda_{vv}(k,l) = E\{v(k+l)v^{T}(k)\} = V(k)\,\delta(l)$$
$$\Lambda_{wv}(k,l) = 0$$

$$E\{(x(0) - x_o)w^T(k)\} = 0$$

$$E\{(x(0) - x_o)v^T(k)\} = 0$$

Output Measurements

y(k) is the measured output, which is considered as an outcome at instant k of the random sequence $\{y(k)\}$ $k = 0, 1 \cdots$

• set of available measurements at the instant j

$$Y_j = \{y(0), y(1), \cdots, y(j)\}$$

Notation so far ...

- Initial state marginal mean:
- Initial state marginal covariance:
- Input noise covariance :
- Measurement noise covariance:
- Set of j+1 output measurements: $\{y(0), y(1), \dots, y(j)\}$

 \mathcal{X}_{O}

 X_{0}

W(k)

V(k)

 Y_{j}

Kalman Filter Objective

Obtain the **best state estimate** given available measurements

Conditional state estimation problem

Conditional state estimation

New notation:

 $\widehat{x}(k|j) = E\{x(k)|Y_j\}$

Conditional state estimate

given the set of available measurements:

$$Y_j = \{y(0), y(1), \cdots, y(j)\}$$

Conditional state estimation

$$\widehat{x}(k|j) = E\{x(k)|Y_j\}$$

$$Y_j = \{y(0), y(1), \dots, y(j)\}$$

When:

- k = j this is a <u>filtering problem</u> \leftarrow our focus
- k > j this is a <u>prediction problem</u>
- k < j this a <u>smoothing problem</u>

A-priori state estimate (one step prediction)

New notation:

$$\widehat{x}^{o}(k) = \widehat{x}(k|k-1)$$

Conditional state estimate given the set of available measurements: Y_{k-1} { $y(0), y(1), \dots, y(k-1)$ }

before y(k)

A-priori state estimation error:

$$\tilde{x}^{o}(k) = \tilde{x}(k|k-1) = x(k) - \hat{x}^{o}(k)$$

New notation:

$$\widehat{x}(k) = \widehat{x}(k|k)$$

Conditional state estimate given the set of available measurements: Y_k $\{y(0), y(1), \dots, y(k)\}$ *after y(k)*

A-posteriori state estimation error:

$$\tilde{x}(k) = \tilde{x}(k|k) = x(k) - \hat{x}(k)$$

State Estimate Covariances

A-priori estimation error covariance:

$$M(k) = E\{\tilde{x}^{o}(k)\tilde{x}^{oT}(k)\}$$
$$= E\{\tilde{x}(k|k-1)\tilde{x}^{T}(k|k-1)\}$$

A-posteriori estimation error covariance:

$$Z(k) = E\{\tilde{x}(k)\tilde{x}^{T}(k)\}$$
$$= E\{\tilde{x}(k|k)\tilde{x}^{T}(k|k)\}$$

Summary of estimate notation

•
$$\widehat{x}(k|j) = E\{x(k)|Y_j\}$$

- A-priori state estimate : $\hat{x}^{o}(k) = \hat{x}(k|k-1)$
- A-posteriori state estimate : $\hat{x}(k) = \hat{x}(k|k)$
- A-priori output estimate : $\hat{y}^o(k) = E\{y(k)|Y_{k-1}\}$

$$Y_j = \{y(0), y(1), \cdots, y(j)\}$$

Summary of estimate error notation

• A-priori state estimation error and covariance :

$$\tilde{x}^{o}(k) = x(k) - \hat{x}^{o}(k)$$

$$M(k) = \Lambda_{\tilde{x}^o(k)\tilde{x}^o(k)}$$

- A-posteriori state estimation error and covariance: $\tilde{x}(k) = x(k) - \hat{x}(k)$ $Z(k) = \Lambda_{\tilde{x}(k)\tilde{x}(k)}$
- A-priori output estimation error :

$$\tilde{y}^o(k) = y(k) - \hat{y}^o(k)$$

State Estimate Covariances

Notice that:

Initial Conditions for a-priori estimate

Notice that:

$$\widehat{x}^{o}(0) = \widehat{x}(0|-1)$$

a-priori state estimate—before measuring y(0)

$$\hat{x}^{o}(0) = \hat{x}(0|-1) = \underbrace{E\{x(0)\} = x_{o}}_{}$$

initial state marginal estimation

Initial Conditions for a-priori estimate

Notice that:

$$M(0) = E\{\tilde{x}^o(0)\tilde{x}^{oT}(0)\}$$

Given:

• I.C.:
$$\hat{x}^{o}(0) = x_{o}$$
 $M(0) = X_{o}$

• Noise covariance intensities: W(k) = V(k)

- State estimates:
- Error covariances:

 $\hat{x}^{o}(k)$ M(k)

Remember:

• Conditional state estimates:

$$\widehat{x}^{o}(k) = \widehat{x}(k|k-1)$$
 a-priori (before $y(k)$)

$$\widehat{x}(k) = \widehat{x}(k|k)$$
 a-posteriori (after $y(k)$

Remember:

 noises are uncorrelated Gaussian, zero-mean RVSs that are uncorrelated with each other and the initial state:

$$\Lambda_{ww}(k,l) = W(k)\,\delta(l)$$
$$\Lambda_{vv}(k,l) = V(k)\,\delta(l)$$
$$\Lambda_{wv}(k,l) = 0$$
$$\Lambda_{wx}(0,k) = 0$$
$$\Lambda_{vx}(0,k) = 0$$

• Conditional estimator of X given Y and Z

$$\widehat{X}_{|YZ} = \widehat{X}_{|Y} + \left(\widetilde{X}_{|Y}\right)_{|(\widetilde{Z}_{|Y})}$$

Previous lecture notation:

Notation for Kalman filter:

Conditional estimator of x(k) given Y_{k-1} and y(k)

$$\widehat{x}(k) = \widehat{x}^{o}(k) + (\widetilde{x}^{o}(k))_{|(\widetilde{y}^{o}(k))|}$$

Previous lecture Notation for notation: Kalman filter: $X \leftarrow X(k)$ $Y \leftarrow Y_{k-1} = \{y(0), \dots, y(k-1)\}$

 $\longrightarrow y(k)$

• Conditional estimation error of X given Y and Z

$$\Lambda_{\tilde{X}_{|YZ}\tilde{X}_{|YZ}} = \Lambda_{\tilde{X}_{|Y}\tilde{X}_{|Y}} - \Lambda_{\tilde{X}_{|Y}\tilde{Z}_{|Y}}\Lambda_{\tilde{Z}_{|Y}\tilde{Z}_{|Y}}^{-1}\Lambda_{\tilde{Z}_{|Y}\tilde{X}_{|Y}}$$

Previous lecture notation:

Notation for Kalman filter:

• Conditional estimation error of X given Y and Z

$$Z(k) = M(k) - \Lambda_{\tilde{x}^{o}(k)\tilde{y}^{o}(k)}\Lambda_{\tilde{y}^{o}(k)\tilde{y}^{o}(k)}^{-1}\Lambda_{\tilde{y}^{o}(k)\tilde{x}^{o}(k)}$$

Previous lecture Notation for notation: Kalman filter: $X \longleftrightarrow x(k)$ $Y \longleftrightarrow Y_{k-1} = \{y(0), \dots, y(k-1)\}$ $Z \longleftrightarrow y(k)$
• **Before** measurement y(0):

$$\hat{x}^{o}(0) = \hat{x}(0|-1) = E\{x(0)\} = x_{o}$$

(given)
 $\tilde{x}^{o}(0) = x(0) - x_{o}$

$$M(0) = \Lambda_{\tilde{x}^{o}(0)\tilde{x}^{o}(0)}$$

= $E\{(x(0) - x_{o})(x(0) - x_{o})^{T}\}$

$$= X_o$$
 (given)

• A-priori output estimate:

 $\hat{y}^{o}(0) = E\{y(0)\} = E\{Cx(0) + v(0)\}$ $= C\hat{x}^{o}(0) = Cx_{o}$ $(x_{o} = E\{x(0)\} \neq x(0))$

A-priori output estimation error (*KF residual*) $\tilde{y}^{o}(0) = y(0) - C\hat{x}^{o}(0) = Cx(0) + v(0) - C\hat{x}^{o}(0)$ $= C\tilde{x}^{o}(0) + v(0)$

• After measurement y(0):

Calculate a-posteriori state estimate using the conditional estimation formula for Gaussians:

$$\begin{aligned} \hat{x}(0) &= \hat{x}^{o}(0) + (\tilde{x}^{o}(0))_{|(\tilde{y}^{o}(0))} \\ &= \hat{x}^{o}(0) + \Lambda_{\tilde{x}^{o}(0)\tilde{y}^{o}(0)} \ \Lambda_{\tilde{y}^{o}(0)\tilde{y}^{o}(0)}^{-1} \ \tilde{y}^{o}(0) \end{aligned}$$

(We exploited that $E\{\tilde{x}^{o}(0)\} = 0, E\{\tilde{y}^{o}(0)\} = 0$)

$$\hat{x}(0) = \hat{x}^{o}(0) + \Lambda_{\tilde{x}^{o}(0)\tilde{y}^{o}(0)} \Lambda_{\tilde{y}^{o}(0)\tilde{y}^{o}(0)}^{-1} \tilde{y}^{o}(0)$$

Calculate:

$$\Lambda_{\tilde{x}^{o}(0)\tilde{y}^{o}(0)} = E\{\tilde{x}^{o}(0)\tilde{y}^{oT}(0)\}$$

=
$$E\{\tilde{x}^{o}(0) [C \,\tilde{x}^{o}(0) + v(0)]^{T}\}$$

($E\{\tilde{x}^{o}(0)v^{T}(0)\} = 0$)

$$= \underbrace{E\{\tilde{x}^{o}(0)\tilde{x}^{oT}(0)\}}_{M(0)}C^{T}$$
$$= M(0)C^{T}$$

 $\hat{x}(0) = \hat{x}^{o}(0) + M(0)C^{T} \wedge_{\tilde{y}^{o}(0)\tilde{y}^{o}(0)}^{-1} \tilde{y}^{o}(0)$

Calculate:

 $\Lambda_{\tilde{y}^{o}(0)\tilde{y}^{o}(0)} = E\{\tilde{y}^{o}(0)\tilde{y}^{o'I'}(0)\}$

 $= E\{[C \tilde{x}^{o}(0) + v(0)] [C \tilde{x}^{o}(0) + v(0)]^{T}\} \\ (E\{\tilde{x}^{o}(0)v^{T}(0)\} = 0)$

 $= C M(0) C^{T} + V(0)$

• **a-posteriori state** estimate:

$$\widehat{x}(0) = \widehat{x}^{o}(0) + \bigwedge_{\widetilde{x}^{o}(0)\widetilde{y}^{o}(0)} \bigwedge_{\widetilde{y}^{o}(0)\widetilde{y}^{o}(0)} \bigwedge_{\widetilde{y}^{o}(0)\widetilde{y}^{o}(0)} \widetilde{y}^{o}(0)$$
$$\underbrace{M(0)C^{T}}_{M(0)C^{T}} \underbrace{[CM(0)C^{T} + V(0)]^{-1}}_{[CM(0)C^{T} + V(0)]^{-1}}$$

$$\hat{x}(0) = \hat{x}^{o}(0) + M(0)C^{T} \left[C M(0)C^{T} + V(0) \right]^{-1} \tilde{y}^{o}(0)$$
$$\tilde{y}^{o}(0) = y(0) - C \hat{x}^{o}(0) \qquad \hat{x}^{o}(0) = x_{o}$$

Kalman Filter Solution:
$$k = 0$$

Review of the results so far:
 $\hat{x}^{o}(0) = x_{o}$
 $\tilde{y}^{o}(0) = y(0) - C \hat{x}^{o}(0)$
 $M(0) = X_{o}$
 $\hat{x}(0) = \hat{x}^{o}(0) + M(0)C^{T} [C M(0)C^{T} + V(0)]^{-1} \tilde{y}^{o}(0)$

 $Z(0) = E\{\tilde{x}(0)\tilde{x}^{T}(0)\} = \Lambda_{\tilde{x}(0)\tilde{x}(0)}$

• A-posteriori state estimation error:

$$\tilde{x}(0) = x(0) - \hat{x}(0)$$

• A-posteriori state estimation error covariance:

$$Z(0) = E\{\tilde{x}(0)\tilde{x}^{T}(0)\} = \Lambda_{\tilde{x}(0)\tilde{x}(0)}$$

• **a-posteriori state** estimation covariance:

$$Z(0) = E\{\tilde{x}(0)\tilde{x}^{T}(0)\} = \Lambda_{\tilde{x}(0)\tilde{x}(0)}$$

• Use least squares result:

• **a-posteriori state** estimation covariance:

$$Z(0) = E\{\tilde{x}(0)\tilde{x}^{T}(0)\} = \Lambda_{\tilde{x}(0)\tilde{x}(0)}$$

• Use least squares result:

$$\Lambda_{\tilde{x}(0)\tilde{x}(0)} = \underbrace{\Lambda_{\tilde{x}^{o}(0)\tilde{x}^{o}(0)}}_{M(0)} - \underbrace{\Lambda_{\tilde{x}^{o}(0)\tilde{y}^{o}(0)}}_{M(0)C^{T}} \underbrace{\Lambda_{\tilde{y}^{o}(0)\tilde{y}^{o}(0)}}_{C^{T}} + V(0)]^{-1}$$

$$Z(0) = M(0) - M(0)C^{T} \left[CM(0)C^{T} + V(0) \right]^{-1} CM(0)$$

Kalman Filter Solution: k = 0Review of the results so far:

$$\hat{x}^o(0) = x_o$$

$$\tilde{y}^{o}(0) = y(0) - C \,\hat{x}^{o}(0)$$

$$M(0) = X_o$$

$$\hat{x}(0) = \hat{x}^{o}(0) + M(0)C^{T} \left[C M(0)C^{T} + V(0) \right]^{-1} \tilde{y}^{o}(0)$$

$$Z(0) = M(0) - M(0)C^{T} \left[C M(0)C^{T} + V(0) \right]^{-1} C M(0)$$

Kalman Filter Solution: k = 1Before measurement y(1):

• Determine a-priori state estimate $\hat{x}^{o}(1)$

$$\hat{x}^{o}(1) = \hat{x}(1|0) = E\{x(1)|y(0)\}$$

• Determine a-priori state estimation error covariance

$$M(1) = E\{\tilde{x}^o(1)\tilde{x}^{oT}(1)\}\$$

Kalman Filter Solution: k = 1A-priori state estimate:

$$\hat{x}^{o}(1) = \hat{x}(1|0) = E\{x(1)|y(0)\}$$

Use state equation and take conditional expectations:

$$x(1) = Ax(0) + Bu(0) + B_w w(0)$$

$$\hat{x}(1|0) = A\hat{x}(0|0) + Bu(0)$$
Independent

$$\hat{x}^o(1) = A\hat{x}(0) + Bu(0)$$

Kalman Filter Solution: k = 1A-priori state estimation error:

$$\tilde{x}^o(1) = x(1) - \hat{x}^o(1)$$

• Use state equation:

$$x(1) = Ax(0) + Bu(0) + B_w w(0)$$
$$\hat{x}^o(1) = A\hat{x}(0) + Bu(0)$$

$$\tilde{x}^{o}(1) = A \tilde{x}(0) + B_{w} w(0)$$

Kalman Filter Solution: k = 1A-priori state estimation error covariance: $M(1) = E\{\tilde{x}^o(1)\tilde{x}^{oT}(1)\}$

• Use:

 $\tilde{x}^{o}(1) = A \tilde{x}(0) + B_{w} w(0) \qquad E\{\tilde{x}(0)w^{T}(0)\}$

$$\underbrace{E\{\tilde{x}^{o}(1)\tilde{x}^{oT}(1)\}}_{M(1)} = A \underbrace{E\{\tilde{x}(0)\tilde{x}^{T}(0)\}}_{Z(0)} A^{T}$$
$$+ B_{w} \underbrace{E\{w(0)w^{T}(0)\}}_{W(0)} B_{w}^{T}$$

Kalman Filter Solution: k = 1A-priori state estimation error covariance:

$$M(1) = E\{\tilde{x}^{o}(1)\tilde{x}^{oT}(1)\}$$

$$M(1) = AZ(0)A^T + B_w W(0)B_w^T$$

- **Before** measurement y(1):
- $\hat{y}^{o}(1) = E\{y(1)|y(0)\}$

$$= E\{Cx(1) + v(1)|y(0)\}\$$

 $= C E\{x(1)|y(0)\}$

 $= C\hat{x}^{o}(1)$

Kalman Filter Solution: k = 1Before measurement y(1):

$$\widehat{y}^{o}(1) = C \widehat{x}^{o}(1)$$

A-priori output estimation error $\tilde{y}^{o}(1)$

$$\tilde{y}^{o}(1) = y(1) - \hat{y}^{o}(1)$$

$$\tilde{y}^{o}(1) = y(1) - C \, \hat{x}^{o}(1)$$

• After measurement y(1):

Calculate a-posteriori state estimate using the conditional estimation formula for Gaussians:

$$\begin{aligned} \widehat{x}(1) &= \widehat{x}^{o}(1) + (\widetilde{x}^{o}(1))_{|(\widetilde{y}^{o}(1))} \\ &= \widehat{x}^{o}(1) + \bigwedge_{\widetilde{x}^{o}(1)\widetilde{y}^{o}(1)} \bigwedge_{\widetilde{y}^{o}(1)\widetilde{y}^{o}(1)}^{-1} \widetilde{y}^{o}(1) \end{aligned}$$

(We exploited that $E\{\tilde{x}^{o}(1)\} = 0, E\{\tilde{y}^{o}(1)\} = 0$)

Kalman Filter Solution: k = 1Before measurement y(1):

$$\widehat{y}^{o}(1) = C \widehat{x}^{o}(1)$$

A-priori output estimation error $\tilde{y}^{o}(1)$

$$\tilde{y}^{o}(1) = y(1) - \hat{y}^{o}(1)$$

$$= Cx(1) + v(1) - C\hat{x}^{o}(1)$$

$$= C \tilde{x}^{o}(1) + v(1)$$

Kalman Filter Solution: k = 1IMPORTANT: Property 1 of least squares estimation:

$\hat{y}^{o}(1) = E\{y(1)|y(0)\}$

• The a-priori output estimation error $\tilde{y}^o(1)$ is uncorrelated with y(0)

$$E\{y(0)\tilde{y}^{oT}(1)\} = 0$$

$$\hat{x}(1) = \hat{x}^{o}(1) + \bigwedge_{\tilde{x}^{o}(1)\tilde{y}^{o}(1)} \bigwedge_{\tilde{y}^{o}(1)\tilde{y}^{o}(1)}^{-1} \tilde{y}^{o}(1)$$

• Calculate $\Lambda_{\tilde{x}^o(1)\tilde{y}^o(1)}$

$$\begin{split} \Lambda_{\tilde{x}^{o}(1)\tilde{y}^{o}(1)} &= E\{\tilde{x}^{o}(1)\tilde{y}^{oT}(1)\} \\ &= E\{\tilde{x}^{o}(1)\left[C\,\tilde{x}^{o}(1) + v(1)\right]^{T}\} \\ E\{\tilde{x}^{o}(1)v^{T}(1)\} = 0 \end{split}$$

$$= \underbrace{E\{\tilde{x}^{o}(1)\tilde{x}^{oT}(1)\}}_{M(1)}C^{T}$$

 $= M(1) C^T$

$$\hat{x}(1) = \hat{x}^{o}(1) + M(1) C^{T} \wedge_{\tilde{y}^{o}(1)\tilde{y}^{o}(1)}^{-1} \tilde{y}^{o}(1)$$

• Calculate $\Lambda_{\widetilde{y}^o(1)\widetilde{y}^o(1)}$

 $\Lambda_{\tilde{y}^o(1)\tilde{y}^o(1)} = E\{\tilde{y}^o(1)\tilde{y}^{oT}(1)\}$

 $= E\{[C \,\tilde{x}^{o}(1) + v(1)] \, [C \,\tilde{x}^{o}(1) + v(1)]^{T}\}$ $E\{\tilde{x}^{o}(1)v^{T}(1)\}=0$

 $= C E\{\tilde{x}^{o}(1)\tilde{x}^{oT}(1)\} C^{T} + E\{v(1)v^{T}(1)\}$ M(1)V(1)

 $= C M(1) C^{T} + V(1)$

• **a-posteriori state** estimate:

$$\widehat{x}(1) = \widehat{x}^{o}(1) + \underbrace{\bigwedge_{\widetilde{x}^{o}(1)\widetilde{y}^{o}(1)}}_{M(1)C^{T}} \underbrace{\bigwedge_{\widetilde{y}^{o}(1)\widetilde{y}^{o}(1)}}_{[CM(1)C^{T} + V(1)]^{-1}} \widetilde{y}^{o}(1)$$

$$\hat{x}(1) = \hat{x}^{o}(1) + M(1)C^{T} \left[C M(1)C^{T} + V(1) \right]^{-1} \tilde{y}^{o}(1)$$
$$\tilde{y}^{o}(1) = y(1) - C \hat{x}^{o}(1)$$

Kalman Filter Solution:
$$k = 1$$

Review of the results so far:
 $\tilde{x}^{o}(1) = A \tilde{x}(0) + B_{w} w(0)$
 $\tilde{y}^{o}(1) = y(1) - C \hat{x}^{o}(1)$
 $M(1) = A Z(0) A^{T} + B_{w} W(0) B_{w}^{T}$
 $\hat{x}(1) = \hat{x}^{o}(1) + M(1) C^{T} [C M(1) C^{T} + V(1)]^{-1} \tilde{y}^{o}(1)$
 $Z(1) =$

• A-posteriori state estimation error:

$$\tilde{x}(1) = x(1) - \hat{x}(1)$$

• A-posteriori state estimation error covariance:

$$Z(1) = E\{\tilde{x}(1)\tilde{x}^{T}(1)\} = \Lambda_{\tilde{x}(1)\tilde{x}(1)}$$

• **a-posteriori state** estimation covariance:

$$Z(1) = E\{\tilde{x}(1)\tilde{x}^{T}(1)\} = \Lambda_{\tilde{x}(1)\tilde{x}(1)}$$

• Use least squares result:

$$\underbrace{\bigwedge_{\tilde{x}(1)\tilde{x}(1)}}_{Z(1)} = \underbrace{\bigwedge_{\tilde{x}^{o}(1)\tilde{x}^{o}(1)}}_{M(1)} - \underbrace{\bigwedge_{\tilde{x}^{o}(1)\tilde{y}^{o}(1)}}_{M(1)C^{T}} \underbrace{\bigwedge_{\tilde{y}^{o}(1)\tilde{y}^{o}(1)}}_{[CM(1)C^{T} + V(1)]^{-1}} \\ X(1) = M(1) - M(1)C^{T} \left[CM(1)C^{T} + V(1)\right]^{-1} CM(1)$$

Kalman Filter Solution: k = 1Review:

$$\hat{x}^{o}(1) = A \hat{x}(0) + B u(0)$$

$$\tilde{y}^{o}(1) = y(1) - C \hat{x}^{o}(1)$$

$$M(1) = A Z(0) A^{T} + B_{w} W(0) B_{w}^{T}$$

$$\hat{x}(1) = \hat{x}^{o}(1) + M(1) C^{T} \left[C M(1) C^{T} + V(1) \right]^{-1} \tilde{y}^{o}(1)$$

$$Z(1) = M(1) - M(1) C^{T} \left[C M(1) C^{T} + V(1) \right]^{-1} C M(1)$$

Equations are entirely recursive!

Kalman Filter Solution

1) Compute a-priori output estimation error residual:

$$\tilde{y}^{o}(k) = y(k) - C \,\hat{x}^{o}(k)$$

2) Compute a-posteriori state estimate:

$$\widehat{x}(k) = \widehat{x}^{o}(k) + M(k)C^{T} \left[C M(k)C^{T} + V(k) \right]^{-1} \widetilde{y}^{o}(k)$$

3) Update a-priori state estimate:

$$\widehat{x}^{o}(k+1) = A\widehat{x}(k) + Bu(k)$$

Kalman Filter Solution

4) Compute a-posteriori state estimation error covariance:

$$Z(k) = M(k) - M(k)C^{T} \left[CM(k)C^{T} + V(k) \right]^{-1} CM(k)$$

5) Update a-priori state estimation error covariance:

$$M(k+1) = AZ(k)A^{T} + B_{w}W(k)B_{w}^{T}$$

Kalman filter implementation

 $\hat{x}^{o}(0) = x_{0}$ $M(0) = X_{0}$ for k = 0, 1, 2, ...

obtain measurement
$$y(k)$$

 $\tilde{y}^{o}(k) = y(k) - C\hat{x}^{o}(k)$
 $\hat{x}(k) = \hat{x}^{o}(k) + M(k)C^{T}[CM(k)C^{T} + V(k)]^{-1}\tilde{y}^{o}(k)$
 $Z(k) = M(k) - M(k)C^{T}[CM(k)C^{T} + V(k)]^{-1}CM(k)$

$$\hat{x}^{o}(k+1) = A\hat{x}(k) + Bu(k)$$
$$M(k+1) = AZ(k)A^{T} + B_{w}W(k)B_{w}^{T}$$
wait for next measurement

end

Kalman Filter Solution V-2

 Kalman filter algorithm can be written in a different manner, which only involves the a-priori state estimate and the a-priori estimation error covariance.

$$\widehat{x}(k) = \widehat{x}^{o}(k) + F(k) \, \widetilde{y}^{o}(k)$$

$$F(k) = M(k)C^{T} \left[C M(k)C^{T} + V(k) \right]^{-1}$$

 $M(0) = X_o$

Kalman Filter Solution V-2

 $\hat{x}^{o}(k+1) = A \hat{x}^{o}(k) + B u(k) + L(k) \tilde{y}^{o}(k)$

where

$$L(k) = AF(k)$$

$$L(k) = A M(k)C^{T} \left[C M(k)C^{T} + V(k) \right]^{-1}$$

$$F(k)$$
Kalman Filter Solution V-2 Plugging

$$Z(k) = \underbrace{M(k) - M(k)C^{T} \left[CM(k)C^{T} + V(k)\right]^{-1} CM(k)}_{\text{Into}}$$

$$M(k+1) = AZ(k)A^{T} + B_{w}W(k)B_{w}^{T}$$

Results in the following discrete Riccati difference equation:

 $M(k+1) = AM(k)A^T + B_w W(k)B_w^T$

$$-AM(k)C^{T}\left[CM(k)C^{T}+V(k)\right]^{-1}CM(k)A^{T}$$

Kalman Filter Solution V-2 A-priori state observer structure:

$$\hat{x}^{o}(k+1) = A\hat{x}^{o}(k) + Bu(k) + L(k)\tilde{y}^{o}(k)$$
$$\tilde{y}^{o}(k) = y(k) - C\hat{x}^{o}(k)$$

$$L(k) = A M(k) C^{T} \left[C M(k) C^{T} + V(k) \right]^{-1}$$

$$M(k+1) = A M(k) A^{T} + B_{w} W(k) B_{w}^{T}$$

$$-A M(k) C^{T} \left[C M(k) C^{T} + V(k) \right]^{-1} C M(k) A^{T}$$

$$M(0) = X_{0}$$

Kalman Filter Solution V-2

• Same structure as deterministic a-priori observer

Kalman Filter Solution V-1 (Review) A-posteriori state observer structure:

$$\hat{x}(k) = \hat{x}^{o}(k) + F(k) \, \tilde{y}^{o}(k)$$
$$\hat{x}^{o}(k+1) = A \, \hat{x}(k) + B \, u(k)$$
$$\tilde{y}^{o}(k) = y(k) - C \, \hat{x}^{o}(k)$$

$$F(k) = M(k)C^{T} \left[C M(k)C^{T} + V(k) \right]^{-1}$$
$$M(k+1) = AM(k)A^{T} + B_{w}W(k)B_{w}^{T}$$
$$-AM(k)C^{T} \left[CM(k)C^{T} + V(k) \right]^{-1} CM(k)A^{T}$$

Kalman Filter Solution V-1

• A-posteriori estimator as output

Kalman Filter, State Space Form

$$\hat{x}^{o}(k+1) = A\hat{x}^{o}(k) + Bu(k) + L(k)\tilde{y}^{o}(k)$$

 $\widehat{x}(k) = \widehat{x}^{o}(k) + F(k)\widetilde{y}^{o}(k)$

$$\int \tilde{y}^{o}(k) = y(k) - C\,\hat{x}^{o}(k)$$

 $\hat{x}^{o}(k+1) = [A - L(k)C]\hat{x}^{o}(k) + Bu(k) + L(k)y(k)$ $\hat{x}(k) = [I - F(k)C]\hat{x}^{o}(k) + F(k)y(k)$

Kalman Filter, State Space Form

$$\hat{x}^{o}(k+1) = [A - L(k)C]\hat{x}^{o}(k) + \begin{bmatrix} B & L(k) \end{bmatrix} \begin{bmatrix} u(k) \\ y(k) \end{bmatrix}$$
$$\hat{x}(k) = [I - F(k)C]\hat{x}^{o}(k) + \begin{bmatrix} 0 & F(k) \end{bmatrix} \begin{bmatrix} u(k) \\ y(k) \end{bmatrix}$$

$$F(k) = M(k)C^{T} \left[C M(k)C^{T} + V(k) \right]^{-1}$$

$$L(k) = AM(k)C^{T} \left[C M(k)C^{T} + V(k) \right]^{-1}$$

$$M(k+1) = AM(k)A^{T} + B_{w}W(k)B_{w}^{T}$$

$$-AM(k)C^{T} \left[CM(k)C^{T} + V(k) \right]^{-1} CM(k)A^{T}$$

Kalman Filter (KF) Properties

- The KF is a linear time varying estimator, even when the system is LTI and the noises are WSS
- The KF is the **optimal state estimator** when the input and measurement noises are Gaussian.
- The KF is still the optimal <u>linear</u> state estimator even when the input and measurement noises are not Gaussian.

Kalman Filter (KF) Properties

The KF a-priori output error (a-priori output residual)

$$\tilde{y}^{o}(k) = y(k) - C \,\hat{x}^{o}(k)$$

is often called the *innovation*

it contains only the "new information" in y(k)

Moreover,

$$\Lambda_{\tilde{y}^{o}\tilde{y}^{o}}(k,j) = [CM(k)C^{T} + V(k)]\delta(j)$$

i.e. $\tilde{y}^o(k)$ is an uncorrelated RVS

Kalman Filter (KF) Properties

Proof: It suffices to show that $E\{\tilde{y}^o(k)\tilde{y}^{oT}(j)\} = 0$ j < k

By causality, $E\{v(k) ilde{y}^{oT}(j)\} = 0$ j < k

By least squares property 1, $E\{\tilde{x}^{o}(k)\tilde{y}^{oT}(j)\} = 0 \qquad j < k$ $\Longrightarrow E\{[C\tilde{x}^{o}(k) + v(k)]\tilde{y}^{oT}(j)\} = 0 \qquad j < k$

$$\implies E\{\tilde{y}^{o}(k)\tilde{y}^{oT}(j)\} = 0 \qquad j < k$$

KF as an innovations filter

We will assume, without loss of generality that the control input is zero, i.e.

$$u(k) = 0 \qquad k = 0, 1, \cdots$$

• Plant:

$$x(k+1) = Ax(k) + B_w w(k)$$

$$y(k) = Cx(k) + v(k)$$

• Kalman filter V-2:

$$\hat{x}^{o}(k+1) = A\hat{x}^{o}(k) + L(k)\tilde{y}^{o}(k)$$
$$\hat{y}^{o}(k) = C\hat{x}^{o}(k)$$

KF as an innovations filter $\Phi(z) = (zI - A)^{-1}$

