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ME 233 Advanced Control II

Lecture 7 

Discrete Time Kalman Filter

(ME233 Class Notes pp.KF1-KF6)



Course Outline

• Unit 0: Probability

• Unit 1: State-space control, estimation

• Unit 2: Input/output control

• Unit 3: Adaptive control
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Wiener Filtering
Norbert Wiener: 

• Well-known as the founder of cybernetics, a field he 
developed in the 1970s that emphasized the modeling of 
humans as communication and control systems. 

• In 1942 he did significant work in the use of time series 
for military applications; an example of which would be 
the prediction of the location of enemy planes at the next 
time step. 

• His work in filtering, prediction and smoothing came 
about in 1949. Wiener filtering is solved for Gaussian 
time series and under certain assumptions, stationary 
time series.
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Rudy  Kalman: 

• First major contribution was the introduction of the self-

tuning regulator in adaptive control. 

• Between 1959 and 1964 he wrote a series of seminal 

papers:

– First, the new approach to the filtering problem, 

known today as Kalman Filtering 

– In the meantime, the all pervasive concept of 

controllability and its dual, the concept of 

observability, were formulated. 

• By combining the filtering and the control ideas, the first 

systematic theory for control synthesis, known today as 

the Linear-Quadratic-Gaussian or LQG theory, resulted. 
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Deterministic - state feedback

With fictitious reference input r(k)

State  variable feedback:
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Deterministic - state feedback

• ME 232 Approach: State Variable Feedback
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• What happens if the state is not directly 

measurable – only the output y(k) ?
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Deterministic– state estimation

• ME 232 Approach: State observer
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Deterministic– state observer feedback
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Stochastic State Estimation

System is now contaminated by noise
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Two random disturbances
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Stochastic State Estimation

System is now contaminated by noise
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• Input noise w(k) - contaminates the state

 x(k) is now a random sequence
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Stochastic State Estimation

System is now contaminated by noise
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• Measurement  noise v(k) - contaminates the 

output y(k) 
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Stochastic state model

Where:

• known control input

• input   noise

• measurement  noise
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Initial Conditions

• is Gaussian with known 

marginal mean and covariance:
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Noises

and              are:

• Gaussian zero mean uncorrelated noises

• independent from each other and from
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Not necessarily stationary
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Noises
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Output Measurements

is the measured output, which is 

considered as an outcome at instant k of the 

random sequence

• set of available measurements at the instant j
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Notation so far …

• Initial state marginal mean:

• Initial state marginal covariance:

• Input noise covariance :

• Measurement noise covariance:

• Set of  j+1 output measurements:
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Kalman Filter Objective

Obtain the best state estimate given available 

measurements
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Conditional state estimation problem
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Conditional state estimation

Conditional state estimate 

given the set of available measurements:

New notation:
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Conditional state estimation

When:

• this is a filtering problem

• this is a prediction problem

• this a smoothing problem

our focus
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A-priori state estimate 

(one step prediction)

Conditional state estimate 

given the set of available measurements:

A-priori state estimation error:

before y(k)

New notation:
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A-posteriori state estimate (filtering)

Conditional state estimate 

given the set of available measurements:

A-posteriori state estimation error:

after y(k)

New notation:
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State Estimate Covariances

A-priori estimation error covariance:

A-posteriori estimation error covariance:



Summary of estimate notation

•

• A-priori state estimate :

• A-posteriori state estimate :

• A-priori output estimate :
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Summary of estimate error notation

• A-priori state estimation error and covariance :

• A-posteriori state estimation error and covariance:

• A-priori output estimation error :
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State Estimate Covariances

Notice that:

A-posteriori A-priori



27

Initial Conditions for a-priori estimate

Notice that:

a-priori state estimate—before measuring y(0)

initial state marginal estimation
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Initial Conditions for a-priori estimate

Notice that:

initial state 

marginal covariance
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Kalman Filter Solution

Given:

• I.C.: 

• Noise covariance intensities:
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Kalman Filter Solution

Want to recursively find:

• State estimates: 

• Error covariances:
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a-priori a-posteriori
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Kalman Filter Solution

Remember:

• Conditional state estimates:

a-priori (before y(k) )

a-posteriori (after y(k) )
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Kalman Filter Solution

Remember:

• noises are uncorrelated Gaussian, zero-mean 

RVSs that are uncorrelated with each other 

and the initial state:



We will use property 3 of least squares estimation

• Conditional estimator of X given Y and Z
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Previous lecture 

notation:

Notation for 

Kalman filter:



We will use property 3 of least squares estimation
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• Conditional estimator of x(k) given Yk-1 and 

y(k)

Previous lecture 

notation:

Notation for 

Kalman filter:



We will use property 3 of least squares estimation

• Conditional estimation error of X                

given Y and Z
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Previous lecture 

notation:

Notation for 

Kalman filter:



We will use property 3 of least squares estimation

• Conditional estimation error of X                

given Y and Z
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Previous lecture 

notation:

Notation for 

Kalman filter:
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Kalman Filter Solution: k = 0

• Before measurement y(0):

(given)

(given)
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Kalman Filter Solution: k = 0

• A-priori output estimate:

A-priori output estimation error (KF residual)
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Kalman Filter Solution: k = 0

Review of the results so far:

a-priori

a-posteriori
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Kalman Filter Solution: k = 0
• After measurement y(0):

Calculate a-posteriori state estimate using the 
conditional estimation formula for Gaussians:

(We exploited that                                                                 )
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Calculate:
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Calculate:



• a-posteriori state estimate:
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Kalman Filter Solution: k = 0
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Kalman Filter Solution: k = 0

Review of the results so far:

a-priori
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Kalman Filter Solution: k = 0

• A-posteriori state estimation error:

• A-posteriori state estimation error covariance:
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Kalman Filter Solution: k = 0

• a-posteriori state estimation covariance:

• Use least squares result:
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Kalman Filter Solution: k = 0

• a-posteriori state estimation covariance:

• Use least squares result:
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Kalman Filter Solution: k = 0

Review of the results so far:
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Kalman Filter Solution: k = 1

Before measurement y(1):

• Determine a-priori state estimate

• Determine a-priori state estimation error 

covariance
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Kalman Filter Solution: k = 1

A-priori state estimate:

• Use state equation and take conditional 

expectations:

Independent

from y(0)
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Kalman Filter Solution: k = 1

A-priori state estimation error:

• Use state equation:
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Kalman Filter Solution: k = 1

A-priori state estimation error covariance:

• Use:



53

Kalman Filter Solution: k = 1

A-priori state estimation error covariance:
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Kalman Filter Solution: k = 1

• Before measurement y(1):
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Kalman Filter Solution: k = 1

Before measurement y(1):

A-priori output estimation error
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Kalman Filter Solution: k = 1

Review of the results so far:

a-priori

a-posteriori
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Kalman Filter Solution: k = 1
• After measurement y(1):

Calculate a-posteriori state estimate using the 
conditional estimation formula for Gaussians:

(We exploited that                                                                 )
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Kalman Filter Solution: k = 1

Before measurement y(1):

A-priori output estimation error
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Kalman Filter Solution: k = 1

IMPORTANT: Property  1 of least squares 

estimation:

• The a-priori output estimation error 

is uncorrelated with  
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• Calculate 
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Kalman Filter Solution

• Calculate 
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Kalman Filter Solution: k = 1

• a-posteriori state estimate:
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Kalman Filter Solution: k = 1

Review of the results so far:
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Kalman Filter Solution: k = 1

• A-posteriori state estimation error:

• A-posteriori state estimation error 

covariance:
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Kalman Filter Solution: k = 1

• a-posteriori state estimation covariance:

• Use least squares result:
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Kalman Filter Solution: k = 1

Review:

Equations are entirely recursive!
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1) Compute a-priori output estimation error residual:

2) Compute a-posteriori state estimate:

3) Update a-priori state estimate:

Kalman Filter Solution
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4) Compute a-posteriori state estimation error 

covariance:

5) Update a-priori state estimation error 

covariance:

Kalman Filter Solution



Kalman filter implementation
69
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Kalman Filter Solution V-2

• Kalman filter algorithm can be written in a 

different manner, which only involves the    

a-priori state estimate and the a-priori 

estimation error covariance.
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Plug 

Into

Kalman Filter Solution V-2

Results in
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Kalman Filter Solution V-2

where
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Plugging

Into

• Results in the following 

discrete Riccati difference equation:

Kalman Filter Solution V-2
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Kalman Filter Solution V-2

A-priori state observer structure:
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Kalman Filter Solution V-2

• Same structure as deterministic a-priori 

observer
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Kalman Filter Solution V-1 (Review)

A-posteriori state observer structure:
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Kalman Filter Solution V-1

• A-posteriori estimator as output
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Kalman Filter, State Space Form
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Kalman Filter, State Space Form
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Kalman Filter (KF) Properties 

• The KF is a linear time varying estimator, 

even when the system is LTI and the noises 

are WSS

• The KF is the optimal state estimator when 

the input and measurement noises are 

Gaussian.

• The KF is still the optimal linear state

estimator even when the input and 

measurement noises are not Gaussian.
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Kalman Filter (KF) Properties

The KF a-priori output error (a-priori output residual)

is often called the innovation

it contains only the “new information” in y(k)

Moreover,

i.e.                is an uncorrelated RVS
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Kalman Filter (KF) Properties 

By least squares property 1,

Proof: It suffices to show that 

By causality, 
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KF as an innovations filter

We will assume, without loss of generality that the control 

input is zero, i.e.

• Plant:

• Kalman filter V-2:
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KF as an innovations filter
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