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ME 233 Advanced Control II

Lecture 6

Least Squares Estimation

(ME233 Class Notes pp. LS1-LS5)



Notation
2

Let X and Y be continuous random vectors with 

joint PDF 

Let x and y be respectively outcomes of X and Y 

and 
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Marginal Expectation (review)

Let X and Y be continuous random vectors with 

joint PDF 

Marginal Expectation  (mean) of X
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Marginal Expectation (review)

Let X and Y be continuous random variables with 

joint PDF 

Marginal Expectation  (mean) of X

new notation

(following the ME233 class notes)
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Marginal Expectation

is the minimum least squares 

marginal estimator of X, i.e.

• For any deterministic vector z 

Euclidean norm
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Marginal Expectation

0

Proof:
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Conditional Expectation (review)

Let X and Y be continuous random vectors with 

joint PDF 

Conditional Expectation  (conditional mean)

of X given and outcome Y = y
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Conditional Expectation (review)

Conditional Expectation  (conditional mean)

of X given and outcome Y = y

new notation

(following the ME233 class notes)
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Conditional Expectation

Notice that the conditional expectation

can be interpreted as a function of the  random variable Y.
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Conditional Expectation

Lemma:

For any function                 of the random vector Y, with 

the appropriate dimensions

we can replace X by its conditional expectation
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Marginal Expectation

Proof:

First examine the left-hand side:
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Marginal Expectation

Proof:

First examine the left-hand side:
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Marginal Expectation

Proof:

Now examine the right-hand side:

Not a function of x
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Marginal Expectation

Proof:

Therefore,
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Conditional Expectation

Theorem:

is the least squares minimum estimator of X

given Y, i.e.

for all functions           of Y of appropriate dimensions
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Marginal Expectation

Proof:
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Marginal Expectation

0

Proof:

Define

Since                                     for all outcomes,
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Conditional Expectation for Gaussians 

(review)

When

where



19

Conditional Mean for Gaussians

When

0
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Conditional Mean for Gaussians

When
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Conditional Mean for Gaussians

When

0 0
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• and                 are orthogonal

Least Squares Estimation: Property 1

• The conditional estimation error             and  

are uncorrelated

and
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Proof

Least Squares Estimation: Property 1



Proof

0
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Least Squares Estimation: Property 1

0



25

Proof

Least Squares Estimation: Property 1

scalar

Why does trace

commute with

expectation?
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Deterministic interpretation of

Property 1



27

Recursive LS Estimation

Let X , Y and Z be jointly Gaussian R.V.s
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Recursive LS Estimation

1. Assume that we already know of outcome Y = y

and we have obtained

inverse of an M × M matrix
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Recursive LS Estimation

1. Assume that we already know of outcome Y = y

and we have obtained

2. Now we also know the outcome Z = z

How do we efficiently compute

?



30

Non-Recursive LS Estimation

1) Define the vector

2) Compute

inverse of an (p+M) × (p+M) matrix



Assume that

31

Then,

Least Squares Estimation: Property 2

where
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Deterministic interpretation of Property 2
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because Z and Y
are uncorrelated

0

0

Least Squares Estimation: Property 2

Proof:
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Least Squares Estimation: Property 2

Proof:
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Least Squares Estimation: Property 2

Proof:
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Then,

Least Squares Estimation : Property 3

What happens when   Z and Y are correlated?

This warrants further explanation…
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Recursive LS Estimation

Using Y , we can estimate X and Z by their 
conditional means:

The conditional mean of X The conditional mean of Z

The corresponding conditional estimation errors are: 

Uncorrelated withY (by Least Squares Property 1)
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Recursive LS Estimation

This is now an outcome
This is still random

The conditional mean of X The conditional mean of Z

If we get the outcomes Y=y and Z=z

We have:

The corresponding conditional estimation errors become: 
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Deterministic interpretation of Property 3
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Computation of

where:
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Least Squares Estimation : Property 3

where:

a) Recursive estimate
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Least Squares Estimation : Property 3

where:

b) Recursive estimation error
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Derivation of Recursive LS Estimation

1) Define the vector

2) Compute

inversion of an (p+M) × (p+M) matrix
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Solution: use Schur complement
• Given

• Compute the  Schur complement of 

and

which is the conditional covariance 
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Solution: use Schur complement of
• Given

• Then
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Non-Recursive LS Estimation
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Use Schur complement
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Use Schur complement
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Use Schur complement

expected value of X given outcome y
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Use Schur complement

The expected value of               given the outcome 

We will now show that
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Computation of 

The conditional mean of Z given Y = y :
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Computation of

Therefore,

We will now compute                         using the LS result: 

to verify that
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Computation of

Using Gaussian least squares results:

0

Estimation errors always have zero means
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Computation of

Using Gaussian least squares results:

the conditional covariance
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Computation of

Using Gaussian least squares results:

Notice that, from the Schur complements result,
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Computation of

Using Gaussian least squares results:

0
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Computation of

Using Gaussian least squares results:
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Computation of

Therefore,

and
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Non-Recursive LS Estimation Error
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Use Schur complement
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Use Schur complement
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Summary

• The conditional mean is the least squares 

estimator:

• For Gaussians, the conditional mean is an 

affine function
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Summary
The conditional mean can be computed 

recursively:

1. If we first know of outcome Y = y
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2 If we afterwards know of outcome Z = z

Summary
The conditional mean can be computed 

recursively:

then



Course Outline

• Unit 0: Probability

• Unit 1: State-space control, estimation

• Unit 2: Input/output control

• Unit 3: Adaptive control
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Finished


