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ME 233 Advanced Control II

Lecture 5

Random Vector Sequences

(ME233 Class Notes pp. PR6-PR10)
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Outline

• Random vector sequences

– Mean, auto-covariance, cross-covariance

• MIMO Linear Time Invariant Systems

• State space systems driven by white noise

• Lyapunov equation for covariance 

propagation 
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Random vector sequences

A two-sided random vector sequence is a 

collection of random vectors 

defined over the same probability space

each                                    is itself a random vector
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Random vector sequences

We either will use

to denote the two-sided random vector sequence.

Shorthand

(sloppy) notation

or

Each element              of the sequence is a random vector: 
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Random vector sequences

A sample sequence

corresponds to the value of 

obtained after performing an experiment
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2nd order statistics

Expected value or mean of X(k),

For a two-sided Random Vector Sequence (RVS)
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Auto-covariance 

Define:
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Cross-covariance 

Define:
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Wide Sense Stationary (WSS)

is WSS if:

1) (time invariant)

2)

A two-sided random vector sequence

(only depends on l)
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Auto-covariance function

For WSS RVS, the auto-covariance is only

a function of the correlation index j

for any index k
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Auto-covariance function Z-transform

Z-transform
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Auto-covariance function 

Proof:

Define
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Auto-covariance function Z-transform

Proof:

Define
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Cross-covariance function

and                 

are two  WSS random vector sequences

for any index k

Notice that: 
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Auto-covariance function Z-transform

Z-transform
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Cross-covariance function

Proof:

Define
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Auto-covariance function Z-transform

Proof:

Define
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Ergodicity

is ergodic

if its  ensemble average  =   time average (constant)

A Wide Sense Stationary  random sequence

sample sequence
with probability 1

(almost surely)
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Ergodicity

For any WSS ergodic random sequence

we can approximate the covariance as a “time average”

with probability 1

(almost surely)
sample sequence
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Power Spectral Density Function

Fourier transform of the auto-covariance function:

Note:

The power spectral density function is periodic, 

with period

l: correlation index

Complex-valued matrix
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Power Spectral Density Function

Using the inverse Fourier  transform we obtain:
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Power Spectral Density Function

Properties of the power spectral density function:

1.

2.

3.

4.
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Power Spectral Density Function

Proof:

Define

1.
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Power Spectral Density Function

Proof:

Define

2.
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Power Spectral Density Function

Properties of the power spectral density function:

(scalar case)

1.

2.

3.

4.
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White noise vector sequence

A WSS random vector sequence                                      is 

white if:

where



27

White noise vector sequence

Given the white WSS random sequence

with

Its  power spectral density (Fourier transform)

is
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White noise illustration (scalar case)

• zero-mean white noise
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Matlab commands:

w = randn(N,1); 

first 20 samples
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MIMO Linear Time Invariant Systems

Let                              with

be the pulse response of an asymptotically stable

MIMO LTI system

Transfer function
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MIMO Linear Time Invariant Systems

Let                              be WSS

is also WSS  

The forced response (zero initial state)
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MIMO Linear Time Invariant Systems

Let                              be WSS

g(k)
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MIMO Linear Time Invariant Systems

We will assume

is zero mean, I.e.

Thus, the forced response output is also zero mean
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MIMO Linear Time Invariant Systems

If

Let                             be    WSS

Then:

g(k)

g(l)
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MIMO Linear Time Invariant Systems

Proof:

Then:
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G(z)

MIMO Linear Time Invariant Systems

Let                             be WSS



36

MIMO Linear Time Invariant Systems

If

Let                             be WSS

Then:

g(k)

g(l)
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MIMO Linear Time Invariant Systems

Proof:

Then:
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G(z)

MIMO Linear Time Invariant Systems

Let                             be WSS
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MIMO Linear Time Invariant Systems

This is a consequence of the fact that



MIMO Linear Time Invariant Systems

Define
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Proof:
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MIMO Linear Time Invariant Systems

If

Then:



MIMO Linear Time Invariant Systems
42

Proof:
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MIMO Linear Time Invariant Systems

If

Then:



MIMO Linear Time Invariant Systems
44

Proof:

Let z = ejω
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Next Topic

• Stable causal LTI systems driven by 

uncorrelated random vector sequences

• State-space

• No WSS assumption

•Similar to “white”

•Definition in 2 slides
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2nd order statistics of a random sequence

Expected value or mean of X(k), 

We now consider one-sided random sequence

Auto-covariance function:
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Uncorrelated random vector sequence

A random vector sequence                                  is 

uncorrelated if:

where
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Subtracting the mean

• Define

Auto-covariance
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State space systems

Consider a LTI system driven by an uncorrelated RVS:
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State space systems

W(k) is an uncorrelated RVS
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State space systems

State Initial Conditions (IC):
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Dynamics of the mean

Taking expectations on the equations above:
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State space systems

Where now

Subtracting the means we obtain,
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Causality in cross-covariance

Proof: (by induction on k)

1. Base case, k=0 : trivial by assumptions on system

2. Case k>0 :

(by induction hypothesis)

0
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Covariance propagation

Notice that:
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Covariance propagation

Taking expectations to:
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Covariance propagation

Notice that:

0

0

(W(k) is an uncorrelated RVS)
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Covariance propagation

We obtain the following Lyapunov equation:
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Covariance propagation

From the output equation

we obtain
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Covariance propagation

Lets now compute,

Using the solution of the LTI system,
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Covariance propagation

0
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Covariance propagation

Lets now compute

define
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Covariance propagation

Satisfies:
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Stationary  covariance equation

If W(k) is WSS

and  X(k) and Y(k) will converge to WSS RVS:

and A is Schur (i.e. all eigenvalues inside unit circle):
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WSS Stationary  covariance equation

For W(k) WSS,

converges to

and A Schur, 
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WSS Stationary  covariance equation

Satisfies the Lyapunov equation:

For W(k) WSS, and A Schur, 
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WSS Stationary  covariance equation

Satisfies 

For W(k) WSS, and A Schur, 
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Illustration – first order system

• Plant:

• Input:

• State initial conditions:
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Matlab simulation: 500 sample sequences

lyy0 = 0.1
lww = 0.2
sys1=ss(.5,1,1,0,1)
N=20;
p=500;
w = sqrt(lww)*randn(N,p)+1; 
y = zeros(N,p);
y0 = sqrt(lyy0)*randn(1,p);
k = (0:1:N-1)';

for j=1:p
[y(:,j),k] = lsim(sys1,w(:,j),k,y0(1,j));

end

m_y=mean(y')
L_yy=diag(cov(y'));
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Mean Transient Response
Actual:

Matlab calculation:

Ensemble mean

m_y=mean(y');
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because not WSS!!



73

0 5 10 15 20
0

0.5

1

1.5

2
A

c
tu

a
l 
m

y
(k

)

k

0 5 10 15 20
0

0.5

1

1.5

2

2.5

E
s
ti

m
a
te

d
 m

y
(k

)

k

Mean Transient Response

Calculated by

m_y=mean(y');
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Covariance Transient Response
Actual:

Matlab calculation:

Ensemble covariance

L_yy=diag(cov(y'));
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Not using ergodicity

because not WSS!!
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Covariance Transient Response
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Calculated by

L_yy=diag(cov(y'));
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Steady State Covariance
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Calculated by

L_yy=diag(cov(y'));


