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ME 233 Advanced Control II

Lecture 4

Introduction to Probability Theory

Random Vectors and Conditional Expectation

(ME233 Class Notes pp. PR4-PR6)
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Outline

• Multiple random variables

• Random vectors

– Correlation and covariance

• Gaussian random variables

• PDFs of Gaussian random vectors

• Conditional expectation of Gaussian random 

vectors
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Multiple Random Variables

Let X and Y be continuous random variables.

• Their joint cumulative distribution function 

(CDF) is given by
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Let X and Y be continuous random variables 

with a differentiable joint CDF

Multiple Random Variables

Their joint probability density function (PDF) is
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Multiple Random Variables

has the usual 

meaning of density   
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Multiple Random Variables

Let X and Y be independent

• Then:

Marginal CDF of X Marginal CDF of Y
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Multiple Random Variables

Let X and Y be independent

• Then:

Marginal PDF of X Marginal PDF of Y
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Correlation and Covariance

Let X and Y be continuous random variables 

with joint PDF 

• Correlation:
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Mean

Let X and Y be continuous random variables 

with joint PDF 

• Mean:

where
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Correlation and Covariance

Let X and Y be continuous random variables 

with joint PDF 

• Covariance:

means



11

Correlation and Covariance

Let X and Y be continuous random variables 

with joint PDF 

• X and Y are uncorrelated if :

•X and Y are orthogonal if :

their covariance is zero

their correlation is zero
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Multiple Random Variables

• X and Y are uncorrelated if and only if

Proof:

therefore
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Variance

The variance of random variable X is:
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Marginal PDF

Let X and Y have a joint PDF 

• Marginal or unconditional PDFs:
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Marginal PDF

Let X and Y have a joint PDF 

• Expected value of X
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Conditional PDF

Let X and Y have a joint PDF 

• The Conditional PDF of X given an 

outcome of Y = y1 :
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Conditional PDF

Let X and Y have a joint PDF 

• The Conditional PDF of Y given an 

outcome of X = x1 :
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Conditional PDF

Let X and Y have a joint PDF 

• Bayes’ rule:
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Conditional Expectation

Let X and Y have a joint PDF 

• Conditional  Expectation of X given an 

outcome of Y = y1 : 
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Conditional Variance

Let X and Y have a joint PDF 

• Conditional  variance of X given an outcome 

of Y = y1 :



21

Independent Variables

Let X and Y be independent. Then:



Independent Variables

If X and Y are independent random variables, 

then X and Y are uncorrelated
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(independence)

Proof:

The converse statement is NOT true in general



Bilateral Laplace and Fourier Transforms

Given

• Laplace transform:

• Inverse Laplace transform:   
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for some real γ so that contour path of integration 

is in the region of convergence 



Bilateral Laplace and Fourier Transforms

Given

• Fourier transform:

• Inverse Fourier transform:
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Moment Generating Function

The Fourier transform of the PDF of a random variable 

X is also called the moment generating function or 

characteristic function

Notice that, given the  PDF pX(x) 
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it can be shown that

where [n] indicates the nth derivative w/r ω (see Poolla’s notes) 
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Properties of Normal distributions

The moment generating function of a zero-

mean normal distribution is also normal.



27

The moment generating functions of X is:

Moment generating functions of Normal PDFs

Let,

i.e.,
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Sum of independent random variables

Let X and Y be two independent random variables 

with PDFs

Define

(convolution)

then              
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Proof
Assume X and Y are two independent random 

variables and  define

Let us now calculate the moment generating 

function of Z:

(independence)
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Proof
Since

Applying the inverse Fourier transform,
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Random Vectors

Let X1 and X2 be continuous random variables.

Recall that:

• Their joint CDF is given by

• Their joint PDF is
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Random Vector

Define the random vector

with CDF

(and the dummy vector)
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Random Vector

Define the random vector

with PDF

(and the dummy vector)
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Random Vector

Define the random vector

Mean:
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Random Vector

Define the random vector

Mean:

Marginal

PDFs
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Correlation



37

Covariance
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Covariance

• Define any deterministic vector                

• is a scalar random variable.

Proof:
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Random Vectors

X be a random n vector Y be a random m vector

with PDF with PDF
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Cross-covariance

X be a random n vector Y be a random m vector
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Cauchy-Schwarz inequality

For any scalar random variables  X and Y
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Define the random vector

Proof

Thus,
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Gaussian Random Variables (Review)

Let X be Gaussian with PDF

Frequently-used notation

X is normally distributed with 

mean              

and variance 
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Two independent Gaussians

-10 -5 0 5 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

-10 -5 0 5 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14



45

Space-saving notation

dummy variables
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Two independent Gaussians
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Two independent Gaussians

Joint PDF of independent Gaussian X and Y
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Two independent Gaussians

Joint PDF of independent Gaussian X and Y
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Two independent Gaussians

Define the vector

(independent Gaussian X and Y)

Covariance
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Two independent Gaussians

Joint PDF of independent Gaussian X and Y
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Two independent Gaussians

Joint PDF of independent Gaussian X and Y
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2-dimensional Gaussian random vector

X and Y

independent
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n-dimensional Gaussian random vector

Joint PDF of a Gaussian vector 

n: dimension of Z
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Linear combination of Gaussians

If X is Gaussian and

where 

• A is a deterministic matrix 

• b is a deterministic vector

then Z is also Gaussian 

Z = AX + b
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Conditional PDF (Review)

Let X and Y have a joint PDF 

• The Conditional PDF of X given an 

outcome of Y = y1 :
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Conditional Expectation (Review)

Let X and Y have a joint PDF 

• Conditional  Expectation of X given an 

outcome of Y = y1 : 
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Motivation for Gaussians

When  X and Y are Gaussians 

The conditional probabilities

and conditional expectations
(for any outcome  y )

can be calculated very easily!
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Random Vectors

X is Gaussian n vector Y is a Gaussian m vector

Define the Gaussian random n + m vector
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Random Vectors

X is Gaussian n vector Y is a Gaussian m vector

(n × n)

(m × m)

(n × m)
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Conditional PDF for Gaussians

• The conditional PDF of X given Y = y

also a Gaussian PDF
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Conditional PDF for Gaussians

The conditional random vector X given and

outcome Y = y

is also normally distributed

(also a Gaussian random vector)
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Conditional PDF for Gaussians

conditional expectation of X given Y = y

affine function of the outcome y
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Conditional PDF for Gaussians

The conditional covariance of X given Y = y

independent of the outcome y !!
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Conditional covariance of X given Y = y

max eigenvalues min eigenvalue
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Independent Gaussians

Let X and Y be jointly Gaussian random vectors.

X and Y are independent if and only if they are uncorrelated

Proof:
We already showed this this is true even if X and Y are 

not jointly Gaussian



Proof of conditional PDF for Gaussians

Idea of proof

• Some details regarding Schur complements

• A lot of algebra…
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Schur complement

• Given • Schur complement of B:

• Then
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Schur complement

• Given • If Schur complement of B

is nonsingular

• Then
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Proof

• Given • Define

• Then

• Results follow by computing inverses and 

determinants of matrices  Q and R



details
70
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Conditional covariance

• Given

• The Schur complement  of 
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Schur complement of 
• Given

• Then
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Schur complement of 
• Given

• and
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Theorem

Given

with

Then
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Proof

• Random vector  

•dummy variables
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Proof: use Schur complement
• Now compute:

• Using:
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Proof 
• Now compute:
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Proof: compute the conditional PDF

where:

dimension of Y
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Proof: compute the conditional PDF

where:

dimension of X + dimension of Y
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Proof
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Proof
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Proof

use Schur determinant result:
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Proof

Now use:
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Proof

Now use:
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Proof

Therefore, 
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Proof

This result is important and constitutes the 

basis for the Kalman Filter! 

with

Therefore,



Supplemental Material

(You are not  responsible for this…)

• Laplace and Fourier transform of Gaussian 

PDF

• Transformation of random variables
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Laplace transform of normal PDF
88

where, after “completing the squares”,



Laplace transform of normal PDF
89

substituting, 

= 1 (area under a PDF = 1)

Fourier transform:
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Transformation of random variables

Given a real valued function f of random variable X

Assume that  Y is also a random variable. 

Also assume that                                    exists. Then,
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Transformation of random variables

Let                             and 


