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Outline

e Continuous random variable
 CDF, PDF, expectation and variance

 Uniform and normal PDFs



Continuous random variable

A continuous-valued random X variable takes
on a range of real values

* For the probability space, (Qa S, P)

» Arandom variable Xisamapping X : S22 — R

Example:

* An experiment whose outcome is a real
number, e.g. measurement of a noisy
voltage.
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Cumulative Distribution Function

Cumulative distribution function (CDF) associated
with the random variable X :

Fx(z) = P(X < x)

The probability that the random variable X
will be less than or equal to the value x



Properties of the cumulative distribution

Fx ()
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Properties of the cumulative distribution
Fx(z) = P(X < z)

1. lim Fy(z) =0
L—— 0O
2. ' —

3. Fx(x) isamonotone non decreasing

4. Fx(x) isleft-continuous



Probability Density Function

For a differentiable cumulative distribution function,
Fx(x) = P(X < z)

Define the probability density function (PDF),

dF'y (x)
dx

pX(.CU) —




Probability Density Function
dF (x)
dx

Py (55} —
Interpretation:

py(z) Azx =~ P(x < X <z + Ax)

forsmall Ax

Loosely interpret this as the probability that X takes
a value close to x



Probability Density Function
dF (x)
dx

pX(CC) —

By the Fundamental Theorem of Calculus

/pr(x)dw = F(b) — Fy(a)

a

b
= /apX(a’;)da::P(agXSb)




Probability Density Function

/pr(x)dx = P(a < X <Vb)
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Probability Density Function

Property:

/O:O Py (z)dr =1

because

| px(@)de = P(=00 < X < o)
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Expectation

The expected value of random variable X is:

O

FElX] =/ rpy(x)dr

— OO

This Is the average value of X.

It IS also called the mean of X
or the first moment of X
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Expected value - notation
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Expected value of a function

f : real valued function of random variable X
Y = f(X)

The expected value of YiIs

O

EVI= | f(@)py(x)da

— OO




Variance

The variance of random variable X Is:

02 = E[(X —my)?]

/OO (x — mX)2 py(x) dx

— OO

where m, = E[X]

Oy Is called the standard deviation of X
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Variance

02 = E[(X —my)?]
= E[X?]-m?

where

E[X?] = /OO x°p () de

— OO

16



Proof

O
/ (x — my) pX(:Iz) dx

= [

72 — 2zm, +m )pX(a:)da:

(| px@@yde=1)

o
—2m rp(x)dxr +m
E[X?] —2m, (z)d 2
— OO
. J
Y
mx

E[X?]—2m% +m% = E[X°]—m?]

X
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Uniform Distribution

A random variable X which is uniformly distributed
betweenx, .. and x, . has the PDF:

D.(x) 4 |
X( matlab function: rand

min max



Summing independent uniformly distributed random
variables

 Let X and Y be 2 independent uniformly
distributed variables between [0,1]

« The random variable
=X +Y

* |Is not uniformly distributed
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20
Summing independent uniformly distributed random

variables

. Let X and Y be 2 independent uniformly
distributed variables between [0,1]

L =X+Y

105 random [ X=rand(1,1e5);
samples of Z \ Y=rand(1,1le5);
\_ 2=X+Y;
" [freqZ,cent]=hist (Z,100) ;
Histogram of bin width=(cent (100)-cent(1))/99;
Z with < area = sum(freqZ) *bin width;
normalized bar (centers,freqZ/area)
area xlabel('z')
\.ylabel ('F Z(z)')




Summing independent uniformly distributed random
variables

. LetX and Y be 2 independent uniformly
distributed variables between [0,1]

L=X+Y
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Summing a very large number of random variables

* Let Xl’---’Xmoo be independent uniformly
distributed variables between [0,1]

Z =Y X
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Gaussian (Normal) Distribution

(z—mx )2

202

Normal distribution

X ~ N(my,o02)

23




History of the Normal Distribution

From Wikipedia:

« The normal distribution was first introduced by
de Moivre in an article in 1733 in the context
of approximating certain binomial distributions
for large n.

« His result was extended by Laplace In his
book Analytical Theory of Probabilities (1812),
and is now called the theorem of de Moivre-
Laplace.

« Laplace used the normal distribution in the
analysis of errors of experiments.
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History of the Normal Distribution

From Wikipedia:

« The important method of least squares was

iIntroduced by Legendre in 1805.

Gauss, who claimed to have used the method since
1794, justified it rigorously in 1809 by assuming a
normal distribution of the errors.

That the distribution Is called the normal or Gaussian

distribution is an instance of Stigler's law of eponymy:

"No scientific discovery is named after its original
discoverer."
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Supplemental Material
(You are not responsible for this...)

« Laplace transform of normal PDF

* Proof of the central limit theorem
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Laplace transform of normal PDF

(z—m y)?
(CE)_ 1 6_ 20%
Px oy V2T
(@—m )2
Po(s) = [T e payde=— [T e PR
X —00 X Oy V2T J—o0

1 % —A()
— (& dm
OxV 2 /—oo

where, after “completing the squares”,

2 m2 2
A@) =so+ o5+ -5 — 5
20X 20‘X 20'X
1

— 52
20’X

{[m -+ (30)2( — mX)}2 — 820'; + 2m . so

2
X

|

27



Laplace transform of normal PDF

substituting,

(s202 /2)—sm /OO 1 —(z+s02 —m )2 /202
P — X X X X x \d
xls) =e oo \V2m0 ’ ) |

[
— _Z (area under a PDF = 1)

P (s) = (20%/2)-smy

252
. , X
Fourier transform: PX (jw) =€ 2 e

—Jwm
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Proof of the central limit theorem

Let X;, X,.... be independent random variables

each with

mean m, and variance o, and define the sequence

n_ o (Xp—my) Y,
T = k=1 k X :Z_/ﬂ

N 1 Vn

where Yk: (Xk_mX)/UX

notice that

m, = E[Y;] =0 JY:E{Y,{?

|=1



Proof of the central limit theorem

The moment generating function of Z,, is

P, (jw) =FE|e
e

by the Taylor series expansion of e*

{—jwzn} — I e—ij};‘zl %}

B JwYp B wQYkQ B jw3Yk3 4 ]
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Proof of the central limit theorem

notice that, as n —o the approximation is exact
. . . w2 "
n||_>moo P, (jw) = nll_>moo 1 — —

Moreover, the PDF and moment generating function of a
normally distributed random variable X ~ N (O, 1) are

1 22 . —w?
()= e T P(w) =8

_ w2 wQ n
and P, (jw) =e 2 = |lim (1 — )
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Proof of the central limit theorem

Therefore, since
w2\ " _ 2
nlinoo PZH (]w) n“—I;noo (1 n ) ¢

Then, taking the inverse Fourier transform we obtain

' 1 _%
n|—>moopzn($) — \/ﬂe

and

im Zp, ~ N(0,1)

n—~oo
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