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ME 233 Advanced Control II

Lecture 3

Introduction to Probability Theory

(ME233 Class Notes pp. PR1-PR3)
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Outline

• Continuous random variable

• CDF, PDF, expectation and variance

• Uniform and normal PDFs



Continuous random variable

A continuous-valued random X variable takes 

on a range of real values

Example: 

• An experiment whose outcome is a real 

number, e.g. measurement of a noisy 

voltage. 
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min max[ , ]X V V

• For the probability space, 

• A random variable X is a mapping
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Cumulative Distribution Function

Cumulative distribution function (CDF) associated 

with the random variable X :

The probability that the random variable X

will be less than or equal to the value  x
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Properties of the cumulative distribution 
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Properties of the cumulative distribution 

1.

2.

3. is a monotone non decreasing  

4. is left-continuous
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Probability Density Function

For a differentiable cumulative distribution function, 

Define the  probability density function (PDF), 
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Probability Density Function

Interpretation:

for small 

Loosely interpret this as the probability that X takes

a value close to x
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Probability Density Function

By the Fundamental Theorem of Calculus
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Probability Density Function

a b
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Probability Density Function

Property:

because
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Expectation

The expected value of random variable X is:

This is  the average value of  X.

It is also called the mean of X 

or the first moment of X 
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Expected value - notation
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Expected value of a function

f  : real valued function of random variable X

The  expected value of  Y is
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Variance

The variance of random variable X is:

where

Is called the standard deviation of X
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Variance

where
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Proof
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Uniform Distribution

A random variable X which is uniformly distributed 

between xmin and xmax has the PDF:

xmin xmax
x

x
min

x
max

1

p (x)
X matlab function: rand



Summing independent uniformly distributed random 

variables

• Let X and Y be 2 independent uniformly 

distributed variables between [0,1]

• The random variable

• is not uniformly distributed
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Z X Y 



Summing independent  uniformly distributed random 

variables

• Let X and Y be 2 independent uniformly 

distributed variables between [0,1]
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Z X Y 

X=rand(1,1e5);

Y=rand(1,1e5);

Z=X+Y;

[freqZ,cent]=hist(Z,100);

bin_width=(cent(100)-cent(1))/99;

area = sum(freqZ)*bin_width;

bar(centers,freqZ/area)

xlabel('z')

ylabel('F_Z(z)')

105 random 

samples of Z

Histogram of 

Z with 

normalized 

area



Summing independent  uniformly distributed random 

variables

• Let X and Y be 2 independent uniformly 

distributed variables between [0,1]
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Z X Y 

z



• Let X1,…,X1000 be independent uniformly 

distributed variables between [0,1]

Summing a very large number  of random variables
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z
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Gaussian (Normal) Distribution

Normal distribution
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History of the Normal Distribution

From Wikipedia:

• The normal distribution was first introduced by 
de Moivre in an article in 1733 in the context 
of approximating certain binomial distributions 
for large n. 

• His result was extended by Laplace in his 
book Analytical Theory of Probabilities (1812), 
and is now called the theorem of de Moivre-
Laplace.

• Laplace used the normal distribution in the 
analysis of errors of experiments. 
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History of the Normal Distribution

From Wikipedia:

• The important method of least squares was 
introduced by Legendre in 1805. 

• Gauss, who claimed to have used the method since 
1794, justified it rigorously in 1809 by assuming a 
normal distribution of the errors. 

• That the distribution is called the normal or Gaussian 
distribution is an instance of Stigler's law of eponymy: 
"No scientific discovery is named after its original 
discoverer."
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Supplemental Material 

(You are not responsible for this…)

• Laplace transform of normal PDF

• Proof of the central limit theorem



Laplace transform of normal PDF
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where, after “completing the squares”,



Laplace transform of normal PDF
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substituting, 

= 1 (area under a PDF = 1)

Fourier transform:



Proof of the central limit theorem

Let X1, X2,... be independent random variables each with 

mean mx and variance σx
2 and define the sequence
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where

notice that



Proof of the central limit theorem
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The moment generating function of Zn is

by the Taylor series expansion of ex



Proof of the central limit theorem
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notice that, as n →∞ the approximation is exact

Moreover, the PDF and moment generating function of a 

normally distributed random variable                                are 

and 



Proof of the central limit theorem
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Therefore, since

Then, taking the inverse Fourier transform we obtain 

and 


