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Deterministic SISO ARMA model

SISO ARMA plant model:

A(q−1)y(k) = q−dB(q−1)u(k)

where y(k) and u(k) are scalar

I u(k) is the control input

I y(k) is the output

I d is the pure time delay

I no disturbance



Model assumptions

SISO ARMA plant model:

A(q−1)y(k) = q−dB(q−1)u(k)

where y(k) and u(k) are scalar

I The polynomials

A(q−1) = 1 + a1q
−1 + · · ·+ anq

−n

B(q−1) = b0 + b1q
−1 + · · ·+ bmq

−m

are co-prime

I B(q−1) is anti-Schur

I m, n, and d are known

I 0 < bmino ≤ b0, where bmino is known



Control Objectives

1. Pole Placement: The poles of the closed-loop system must

be placed at specific locations in the complex plane

Closed-loop polynomial:

Ac(q
−1) = B(q−1)A

′
c(q
−1)

where A
′
c(q
−1) is an anti-Schur polynomial chosen by the

designer:

A
′
c(q
−1) = 1 + a

′
c1q
−1 + · · ·+ a

′

c(n′
c)
q−(n

′
c)



Control Objectives

2. Tracking: The output sequence y(k) must follow an

arbitrary bounded reference sequence yd(k), which is known

yd(k) is generated by the reference model

A
′
c(q
−1)yd(k) = q−dBm(q−1)ud(k)

where

I ud(k) is a known bounded reference input control input

sequence

I Bm(q−1) is chosen by the designer

Note that A
′
c(q
−1) comes from the pole placement and the

reference model delay is the same as the plant delay



Reformulated plant dynamics

Using the solution of the Diophantine equation

A
′
c(q
−1) = A(q−1)R

′
(q−1) + q−dS(q−1)

we rewrite the plant dynamics as

A
′
c(q
−1)y(k) = q−d

[
R(q−1)u(k) + S(q−1)y(k)

]

where R(q−1) = R
′
(q−1)B(q−1) and

R(q−1) = r0 + r1q
−1 + · · ·+ rnrq

−nr

S(q−1) = s0 + s1q
−1 + · · ·+ snsq

−ns

nr = m+ d− 1 ns = max{n− 1, n′c − d}



Reformulated plant dynamics

So far, we know that

A
′
c(q
−1)y(k) = q−d

[
R(q−1)u(k) + S(q−1)y(k)

]
R(q−1) = r0 + r1q

−1 + · · ·+ rnrq
−nr

S(q−1) = s0 + s1q
−1 + · · ·+ snsq

−ns

Defining η(k) = A
′
c(q
−1)y(k) and

φ(k) =
[
y(k) · · · y(k − ns) u(k) · · · u(k − nr)

]T
θc =

[
s0 · · · sns r0 · · · rnr

]T
we rewrite the plant dynamics as

η(k) = φT (k − d)θc



Direct adaptive control approach

The plant dynamics are written as

η(k) = φT (k − d)θc

I η(k) is the known “filtered output”

I φ(k) is the known regressor vector

I θc is the unknown parameter vector

⇒ we use RLS to estimate θc



Tracking control objective

We would like to achieve

lim
k→∞
{y(k)− yd(k)} = 0

Since A
′
c(q
−1) is anti-Schur this is equivalent to

0 = lim
k→∞
{A′

c(q
−1)[y(k)− yd(k)]}

= lim
k→∞
{η(k)− ηd(k)}

where ηd(k) = A
′
c(q
−1)yd(k) = q−dBm(q−1)ud(k) = r(k − d).



List of error signals

Parameter estimation error:

θ̃c(k) = θc − θ̂c(k)

Filtered output estimation errors:

eo(k) = η(k)− φT (k − d)θ̂c(k − 1) a-priori

= φT (k − d)θ̃c(k − 1)

e(k) = η(k)− φT (k − d)θ̂c(k) a-posteriori

= φT (k − d)θ̃c(k)

Filtered output tracking error:

ε(k) = η(k)− ηd(k)



Direct adaptive control

1. η(k + 1) = A
′
c(q
−1)y(k + 1)

2. φ(k − d + 1) =



y(k − d + 1)
...

y(k − d + 1− ns)
u(k − d + 1)

...

u(k − d + 1− nr)


3. eo(k + 1) = η(k + 1)− φT (k − d + 1)θ̂c(k)

4. e(k + 1) =
λ1(k)

λ1(k) + φT (k − d + 1)F (k)φ(k − d + 1)
eo(k + 1)

5. θ̂oc(k + 1) = θ̂c(k) +
1

λ1(k)
F (k)φ(k − d + 1)e(k + 1)



Direct adaptive control

6. Form θ̂c(k + 1):

ŝi(k + 1) = ŝoi (k + 1), i = 0, . . . , ns

r̂i(k + 1) = r̂oi (k + 1), i = 1, . . . , nr

r̂0(k + 1) = max{bmino, r̂
o
0(k + 1)} parameter projection

7. F (k + 1) =
1

λ1(k)

[
F (k)

−λ2(k)
F (k)φ(k − d + 1)φT (k − d + 1)F (k)

λ1(k) + λ2(k)φT (k − d + 1)F (k)φ(k − d + 1)

]

where λ1(k) and λ2(k) are chosen so that

0 < λ1 ≤ λ1(k) ≤ 1 0 ≤ λ2(k) ≤ λ2 < 2

and 0 < Kmin ≤ λmin(F (k)) ≤ λmax(F (k)) ≤ Kmax <∞



Direct adaptive control

8. Apply control

q¡dB(q¡1)

A(q¡1)

y(k)1

R̂(q¡1; k)
Bm(q

¡1)
u(k)

Ŝ(q¡1; k)

r(k)

+¡
ud(k)

feedforward

R̂(q−1, k)u(k) = Bm(q−1)ud(k)− Ŝ(q−1, k)y(k)

where

R̂(q−1, k) = r̂0(k) + r̂1(k)q−1 + · · ·+ r̂nr(k)q−nr

Ŝ(q−1, k) = ŝ0(k) + ŝ1(k)q−1 + · · ·+ ŝns(k)q−ns
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Stability theorem

Using the direct adaptive control approach just outlined, the

tracking error converges to zero, i.e.

lim
k→∞

ε(k) = 0

Moreover, u(k) remains bounded, e(k) −→ 0, and eo(k) −→ 0.

Note that the theorem does not require:

I a-priori knowledge that the control input sequence u(k) is

bounded

I the polynomial A(q−1) is anti-Schur

I any sort of persistence of excitation condition

The theorem does not state that the parameter estimates converge

to the true values
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Outline of stability theorem proof

1. Use hyperstability theory to show that

lim
k→∞

e(k) = 0

2. Prove the limits

lim
k→∞

‖θ̂c(k)− θ̂c(k − 1)‖ = 0

lim
k→∞

[λ1(k − 1)eo(k)]2

λ1(k − 1) + φT (k − d)F (k − 1)φ(k − d)
= 0

lim
k→∞

[λ1(k − 1)ε(k)]2

λ1(k − 1) + φT (k − d)F (k − 1)φ(k − d)
= 0



Outline of stability theorem proof

3. Prove that there exist C1 ≥ 0, C2 ≥ 0 such that

‖φ(k − d)‖ ≤ C1 + C2 max
j∈{0,...,k}

|ε(j)|

4. Prove Goodwin’s technical lemma, which states that ‖φ(k)‖
remains bounded and

lim
k→∞

ε(k) = 0

5. Prove that

lim
k→∞

eo(k) = 0
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Stability theorem proof, part 1

I We want to show that e(k)→ 0

I Simplification: neglect parameter projection

I We will use hyperstability, as in Lecture 20



Stability theorem proof, part 1

As in Lecture 20, the estimation error dynamics can be expressed

using the block diagram

NL

e(k+1)m(k+1)

w(k+1)

0

2

2

(k)


2

- + +

+

-

+

-

-


2

1
(                  )-

2
(k)

s(k+1)

NL1

L2

L1

NL2

v(k+1)

G(q)1



Stability theorem proof, part 1

We will now show that NL1 is P-class:

NL

e(k+1) s(k+1)w(k+1) - +

NL1

2
2

(k)

w(k) = −φT (k − d)θ̃c(k)

Note that e(k) = s(k)− λ2(k − 1)

2
w(k), which implies that

s(k) =
λ2(k − 1)

2
w(k) + e(k)



Stability theorem proof, part 1

2w(k)s(k) = w(k) [λ2(k − 1)w(k) + 2e(k)]

= λ2(k − 1)θ̃Tc (k)φ(k − d)φT (k − d)θ̃c(k)

− 2θ̃Tc (k)[φ(k − d)e(k)]

= θ̃Tc (k)
[
λ2(k − 1)φ(k − d)φT (k − d)

]
θ̃c(k)

− 2θ̃Tc (k)
[
λ1(k)F−1(k − 1)

(
θ̃c(k − 1)− θ̃c(k)

)]

Define ∆θc(k) = θ̂(k)− θ̂(k − 1) = θ̃c(k − 1)− θ̃c(k)

2w(k)s(k) = θ̃Tc (k)
[
F−1(k)− λ1(k)F−1(k − 1)

]
θ̃c(k)

− 2λ1(k)θ̃Tc (k)F−1(k − 1)∆θc(k)



Stability theorem proof, part 1

2w(k)s(k) = θ̃Tc (k)
[
F−1(k)− λ1(k)F−1(k − 1)

]
θ̃c(k)

− 2λ1(k)θ̃Tc (k)F−1(k − 1)∆θc(k)

2w(k)s(k) = θ̃Tc (k)F−1(k)θ̃c(k)− λ1(k)
[
θ̃Tc (k)F−1(k − 1)θ̃c(k)

+2θ̃Tc (k)F−1(k − 1)∆θc(k)
]

= θ̃Tc (k)F−1(k)θ̃c(k)

− λ1(k)
[(
θ̃c(k) + ∆θc(k)

)T
F−1(k − 1)

(
θ̃c(k) + ∆θc(k)

)
−∆θTc (k)F−1(k − 1)∆θc(k)

]
Note that θ̃c(k) + ∆θc(k) = θ̃c(k − 1)



Stability theorem proof, part 1

From the previous slide,

2w(k)s(k) = θ̃Tc (k)F−1(k)θ̃c(k)− λ1(k)θ̃Tc (k − 1)F−1(k − 1)θ̃c(k − 1)

+ λ1(k)∆θTc (k)F−1(k − 1)∆θc(k)

Since λ1(k) ≤ 1 and F (k − 1) � 0, this implies that

2w(k)s(k) ≥
[
θ̃Tc (k)F−1(k)θ̃c(k)− θ̃Tc (k − 1)F−1(k − 1)θ̃c(k − 1)

]



Stability theorem proof, part 1

2w(k)s(k) ≥
[
θ̃Tc (k)F−1(k)θ̃c(k)− θ̃Tc (k − 1)F−1(k − 1)θ̃c(k − 1)

]
Therefore

⇒
k∑

j=0

w(j)s(j) ≥ 1

2

k∑
j=0

[
θ̃Tc (j)F−1(j)θ̃c(j)

− θ̃Tc (j − 1)F−1(j − 1)θ̃c(j − 1)

]

=
1

2

[
θ̃Tc (k)F−1(k)θ̃c(k)− θ̃Tc (−1)F−1(−1)θ̃c(−1)

]
≥ −1

2
θ̃Tc (−1)F−1(−1)θ̃c(−1)



Stability theorem proof, part 1

We have shown that NL1 is

P-class

Using the same arguments as in

Lecture 20 (including the

asymptotic hyperstability

theorem), this yields

lim
k→∞

e(k) = 0

NL

e(k+1)m(k+1)

w(k+1)

0

2

2

(k)


2

- + +

+

-

+

-

-


2

1
(                  )-

2
(k)

s(k+1)

NL1

L2

L1

NL2

v(k+1)

G(q)1
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Stability theorem proof, part 2

We want to prove the limits

lim
k→∞

‖θ̂c(k)− θ̂c(k − 1)‖ = 0

lim
k→∞

[λ1(k − 1)eo(k)]2

λ1(k − 1) + φT (k − d)F (k − 1)φ(k − d)
= 0

lim
k→∞

[λ1(k − 1)ε(k)]2

λ1(k − 1) + φT (k − d)F (k − 1)φ(k − d)
= 0



Stability theorem proof, part 2

We know that 1− λ/2 is SPR,

which implies that it is P-class

This implies that there exists γ̄ ∈ R
such that

−γ̄2 ≤
k∑

j=0

m(j)v(j)

= −
k∑

j=0

w(j)
[
s(j)

+
1

2
(λ− λ2(j − 1))w(j)

]
NL

e(k+1)m(k+1)

w(k+1)

0

2

2

(k)


2

- + +

+

-

+

-

-


2

1
(                  )-

2
(k)

s(k+1)

NL1

L2

L1

NL2

v(k+1)

G(q)1



Stability theorem proof, part 2

Because λ− λ2(j − 1) ≥ 0, j = −1, 0, 1, . . ., we have

−γ̄2 ≤ −
k∑

j=0

w(j)
[
s(j) +

1

2
(λ− λ2(j − 1))w(j)

]

≤ −
k∑

j=0

w(j)s(j)

which implies that

k∑
j=0

w(j)s(j) ≤ γ̄2



Stability theorem proof, part 2

From part 1 of the stability theorem proof,

2w(k)s(k) = θ̃Tc (k)F−1(k)θ̃c(k)− λ1(k)θ̃Tc (k − 1)F−1(k − 1)θ̃c(k − 1)

+ λ1(k)∆θTc (k)F−1(k − 1)∆θc(k)

Since 0 < λ1 ≤ λ1(k) ≤ 1 and F (k − 1) � 0, this implies that

2w(k)s(k) ≥
[
θ̃Tc (k)F−1(k)θ̃c(k)− θ̃Tc (k − 1)F−1(k − 1)θ̃c(k − 1)

]
+ λ1∆θ

T
c (k)F−1(k − 1)∆θc(k)



Stability theorem proof, part 2

2w(k)s(k) ≥
[
θ̃Tc (k)F−1(k)θ̃c(k)− θ̃Tc (k − 1)F−1(k − 1)θ̃c(k − 1)

]
+ λ1∆θ

T
c (k)F−1(k − 1)∆θc(k)

which implies that

2γ̄2 ≥ 2

k∑
j=0

w(j)s(j)

≥
k∑

j=0

[
θ̃Tc (j)F−1(j)θ̃c(j)− θ̃Tc (j − 1)F−1(j − 1)θ̃c(j − 1)

]

+

k∑
j=0

λ1∆θ
T
c (j)F−1(j − 1)∆θc(j)



Stability theorem proof, part 2

2γ̄2 ≥
k∑

j=0

[
θ̃Tc (j)F−1(j)θ̃c(j)− θ̃Tc (j − 1)F−1(j − 1)θ̃c(j − 1)

]

+

k∑
j=0

λ1∆θ
T
c (j)F−1(j − 1)∆θc(j)

2γ̄2 = θ̃Tc (k)F−1(k)θ̃c(k)− θ̃Tc (−1)F−1(−1)θ̃c(−1)

+ λ1

k∑
j=0

∆θTc (j)F−1(j − 1)∆θc(j)

≥ −θ̃Tc (−1)F−1(−1)θ̃c(−1) + λ1

k∑
j=0

∆θTc (j)F−1(j − 1)∆θc(j)



Stability theorem proof, part 2

Thus, we know that

k∑
j=0

∆θTc (j)F−1(j − 1)∆θc(j) ≤
1

λ1

[
2γ̄2 + θ̃Tc (−1)F−1(−1)θ̃c(−1)

]
Since F−1(k) � 0 ∀k, this implies that

lim
k→∞

∆θTc (k)F−1(k − 1)∆θc(k) = 0

Since λmin(F−1(k − 1)) =
1

λmax(F (k − 1))
≥ 1

Kmax
> 0, this

implies that

lim
k→∞

‖∆θc(k)‖ = 0



Stability theorem proof, part 2

Substituting the parameter update equation

∆θc(k) = F (k − 1)φ(k − d)e(k)

into

lim
k→∞

∆θTc (k)F−1(k − 1)∆θc(k) = 0

we obtain

lim
k→∞

φT (k − d)F (k − 1)φ(k − d)e2(k) = 0

Adding the equation lim
k→∞

λ1(k − 1)e2(k) = 0 to this equation

yields

lim
k→∞

[λ1(k − 1) + φT (k − d)F (k − 1)φ(k − d)]e2(k) = 0



Stability theorem proof, part 2

We know that

lim
k→∞

[λ1(k − 1) + φT (k − d)F (k − 1)φ(k − d)]e2(k) = 0

Since e(k) =
λ1(k − 1)eo(k)

λ1(k − 1) + φT (k − d)F (k − 1)φ(k − d)
, we have

lim
k→∞

[λ1(k − 1)eo(k)]2

λ1(k − 1) + φT (k − d)F (k − 1)φ(k − d)
= 0



Stability theorem proof, part 2

Recall that ηd(k) = r(k − d) and the control is given by

R̂(q−1, k)u(k) = r(k)− Ŝ(q−1, k)y(k)

We therefore see that

ηd(k + d) = r(k) = R̂(q−1, k)u(k) + Ŝ(q−1, k)y(k)

= φT (k)θ̂c(k)

which allows us to say that

ε(k) = η(k)− ηd(k) = φT (k − d)θ̃c(k − d)

= φT (k − d)θ̃c(k − 1) + φT (k − d)
[
θ̃c(k − d)− θ̃c(k − 1)

]
= eo(k) + φT (k − d)

[
θ̃c(k − d)− θ̃c(k − 1)

]



Stability theorem proof, part 2

For convenience, define

ζ(k) =
λ1(k − 1) + φT (k − d)F (k − 1)φ(k − d)

λ21(k − 1)

In this notation, we know that lim
k→∞

[eo(k)]2

ζ(k)
= 0

Since 0 < λ1(k) ≤ 1 and 0 < Kmin ≤ λmin(F (k)) ∀k, we have

ζ(k) > φT (k − d)F (k − 1)φ(k − d) ≥ Kmin‖φ(k − d)‖2 ≥ 0

⇒ ‖φ(k − d)‖2

ζ(k)
<

1

Kmin



Stability theorem proof, part 2

By the Cauchy-Schwarz inequality,∣∣∣∣∣∣
φT (k − d)

[
θ̃c(k − d)− θ̃c(k − 1)

]
√
ζ(k)

∣∣∣∣∣∣
≤ ‖φ(k − d)‖√

ζ(k)
‖θ̃c(k − d)− θ̃c(k − 1)‖

≤ 1√
Kmin

‖θ̃c(k − d)− θ̃c(k − 1)‖

The right-hand side of this inequality converges to zero because

‖θ̃c(k − d)− θ̃c(k − 1)‖ converges to zero.

Therefore

lim
k→∞

φT (k − d)
[
θ̃c(k − d)− θ̃c(k − 1)

]
√
ζ(k)

= 0



Stability theorem proof, part 2

Since ε(k) = eo(k) + φT (k − d)
[
θ̃c(k − d)− θ̃c(k − 1)

]
, we have

lim
k→∞

ε(k)√
ζ(k)

= lim
k→∞

eo(k)√
ζ(k)

+ lim
k→∞

φT (k − d)
[
θ̃c(k − d)− θ̃c(k − 1)

]
√
ζ(k)

= 0 + 0

Therefore

lim
k→∞

[λ1(k − 1)ε(k)]2

λ1(k − 1) + φT (k − d)F (k − 1)φ(k − d)
= 0
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Stability theorem proof, part 3

We want to prove that there exist C1 ≥ 0, C2 ≥ 0 such that

‖φ(k − d)‖ ≤ C1 + C2 max
j∈{0,...,k}

|ε(j)|

We have the relationships

y(k) =
q−dB(q−1)

A(q−1)
u(k) =

B(q−1)

A(q−1)
u(k − d)

η(k) = A
′
c(q
−1)y(k)

ε(k) = η(k)− ηd(k)

which define ε(k) from u(k) and ηd(k).

We now invert these relationships, i.e. we reconstruct u(k) from

ε(k) and ηd(k)



Stability theorem proof, part 3

The inverted relationships are

u(k − d) =
A(q−1)

B(q−1)
y(k)

y(k) =
1

A′
c(q
−1)

η(k)

η(k) = ε(k) + ηd(k)

These relationships are shown in the block diagram

A(q¡1)

B(q¡1)

1

A
0
c(q

¡1)

²(k)

´d(k)

´(k)y(k)u(k¡ d)

y(k)



Stability theorem proof, part 3

A(q¡1)

B(q¡1)

1

A
0
c(q

¡1)

²(k)

´d(k)

´(k)y(k)u(k¡ d)

y(k)

Since A
′
c(q
−1) and B(q−1) are anti-Schur, both blocks in the block

diagram are causal and BIBO

Therefore, we can choose nonnegative C̄1u, C2u, C̄1y, and C2y

such that

|u(k − d)| ≤ C̄1u + C2u max
j≤k
|η(j)|

|y(k)| ≤ C̄1y + C2y max
j≤k
|η(j)|



Stability theorem proof, part 3

|u(k − d)| ≤ C̄1u + C2u max
j≤k
|η(j)|

|y(k)| ≤ C̄1y + C2y max
j≤k
|η(j)|

Assuming that |ηd(k)| ≤ η̄d, the triangle inequality tells us that

|η(j)| ≤ |ηd(k)|+ |ε(k)| ≤ η̄d + |ε(k)|

Defining C1u = C̄1u + C2uη̄d and C1y = C̄1y + C2yη̄d we have

|u(k − d)| ≤ C1u + C2u max
j≤k
|ε(j)|

|y(k)| ≤ C1y + C2y max
j≤k
|ε(j)|



Stability theorem proof, part 3

|u(k − d)| ≤ C1u + C2u max
j≤k
|ε(j)|

|y(k)| ≤ C1y + C2y max
j≤k
|ε(j)|

Since max
j≤k−`

|ε(j)| ≤ max
j≤k
|ε(j)| for ` ≥ 0, we have

|u(k − d− `)| ≤ C1u + C2u max
j≤k
|ε(j)|

|y(k − d− `)| ≤ C1y + C2y max
j≤k
|ε(j)|

for all ` ≥ 0



Stability theorem proof, part 3

|u(k − d− `)| ≤ C1u + C2u max
j≤k
|ε(j)|

|y(k − d− `)| ≤ C1y + C2y max
j≤k
|ε(j)|

Using the triangle inequality, we have

‖φ(k − d)‖ ≤
ns∑
j=0

|y(k − d− j)|+
nr∑
i=0

|u(k − d− i)|

≤
ns∑
j=0

(
C1y + C2y max

`≤k
|ε(`)|

)
+

nr∑
i=0

(
C1u + C2u max

`≤k
|ε(`)|

)
Therefore

‖φ(k − d)‖ ≤ [(ns + 1)C1y + (nr + 1)C1u]

+ [(ns + 1)C2y + (nr + 1)C2u] max
j≤k
|ε(j)|
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Stability theorem proof, part 4

We want to prove Goodwin’s technical lemma, which states that

‖φ(k)‖ remains bounded and

lim
k→∞

ε(k) = 0

This proof will be done in three steps:

1. Show that ε(k) remains bounded

2. Show that ‖φ(k)‖ remains bounded

3. Show that ε(k) −→ 0



Stability theorem proof, part 4, step 1 (ε(k) bounded)

Recall from part 2 that

lim
k→∞

[λ1(k − 1)ε(k)]2

λ1(k − 1) + φT (k − d)F (k − 1)φ(k − d)
= 0

Since 0 < λ1 ≤ λ1(k) ≤ 1

and 0 < λmin(F (k − 1)) ≤ λmax(F (k − 1)) ≤ Kmax

we have∣∣∣∣ [λ1(k − 1)ε(k)]2

λ1(k − 1) + φT (k − d)F (k − 1)φ(k − d)

∣∣∣∣
≥ λ21ε

2(k)

1 +Kmax‖φ(k − d)‖2
> 0



Stability theorem proof, part 4, step 1 (ε(k) bounded)

∣∣∣∣ [λ1(k − 1)ε(k)]2

λ1(k − 1) + φT (k − d)F (k − 1)φ(k − d)

∣∣∣∣
≥ λ21ε

2(k)

1 +Kmax‖φ(k − d)‖2
> 0

For convenience, we define ε(k) max
j≤k
|ε(j)|

From part 3, we have that ‖φ(k − d)‖2 ≤ [C1 + C2ε(k)]2, which

implies that∣∣∣∣ [λ1(k − 1)ε(k)]2

λ1(k − 1) + φT (k − d)F (k − 1)φ(k − d)

∣∣∣∣
≥ λ21ε

2(k)

1 +Kmax[C1 + C2ε(k)]2
> 0



Stability theorem proof, part 4, step 1 (ε(k) bounded)

∣∣∣∣ [λ1(k − 1)ε(k)]2

λ1(k − 1) + φT (k − d)F (k − 1)φ(k − d)

∣∣∣∣
≥ λ21ε

2(k)

1 +Kmax[C1 + C2ε(k)]2
> 0

Since

lim
k→∞

[λ1(k − 1)ε(k)]2

λ1(k − 1) + φT (k − d)F (k − 1)φ(k − d)
= 0

we have

lim
k→∞

λ21ε
2(k)

1 +Kmax[C1 + C2ε(k)]2
= 0



Stability theorem proof, part 4, step 1 (ε(k) bounded)

lim
k→∞

λ21ε
2(k)

1 +Kmax[C1 + C2ε(k)]2
= 0

Whenever |ε(k)| = ε(k) ≥ 1, we have

0 <
1 +Kmax[C1 + C2ε(k)]2

λ21ε
2(k)

=
1 +KmaxC

2
1

λ21ε
2(k)

+
2KmaxC1C2

λ21ε(k)
+
KmaxC

2
2

λ21

≤ 1

λ21
[1 +KmaxC

2
1 + 2KmaxC1C2 +KmaxC

2
2 ]

This implies that whenever |ε(k)| = ε(k) ≥ 1, we have

λ21ε
2(k)

1 +Kmax[C1 + C2ε(k)]2
≥ λ21

1 +Kmax[C1 + C2]2
> 0



Stability theorem proof, part 4, step 1 (ε(k) bounded)

Whenever |ε(k)| = ε(k) ≥ 1, we have

λ21ε
2(k)

1 +Kmax[C1 + C2ε(k)]2
≥ λ21

1 +Kmax[C1 + C2]2
> 0

Since

lim
k→∞

λ21ε
2(k)

1 +Kmax[C1 + C2ε(k)]2
= 0

there can only be a finite number of values of k such that

|ε(k)| = ε(k) = max
j≤k
|ε(j)| ≥ 1.

Therefore,

ε(k) remains bounded



Stability theorem proof, part 4, step 2 (φ(k) bounded)

Recall from part 3 that

‖φ(k − d)‖ ≤ C1 + C2 max
j≤k
|ε(j)|

Since ε(k) remains bounded, we immediately see that

φ(k) remains bounded



Stability theorem proof, part 4, step 3 (ε(k) −→ 0)

Recall from part 2 that

lim
k→∞

ε2(k)

ζ(k)
= 0

where

ζ(k) =
λ1(k − 1) + φT (k − d)F (k − 1)φ(k − d)

λ21(k − 1)

Therefore, if we can show that ζ(k) remains bounded, it must be

true that ε(k) −→ 0



Stability theorem proof, part 4, step 3 (ε(k) −→ 0)

Since 0 < λ1 ≤ λ1(k) ≤ 1

and 0 < λmin(F (k − 1)) ≤ λmax(F (k − 1)) ≤ Kmax

we have

|ζ(k)| =
∣∣∣∣λ1(k − 1) + φT (k − d)F (k − 1)φ(k − d)

λ21(k − 1)

∣∣∣∣
≤ 1 +Kmax‖φ(k − d)‖2

λ21

Since the right-hand side is bounded, we see that ζ(k) remains

bounded.

Therefore

lim
k→∞

ε(k) = 0
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Stability theorem proof, part 5

Recall from part 2 that

lim
k→∞

[eo(k)]2

ζ(k)
= 0

where

ζ(k) =
λ1(k − 1) + φT (k − d)F (k − 1)φ(k − d)

λ21(k − 1)

We have already shown that ζ(k) is bounded

Therefore

lim
k→∞

eo(k) = 0
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