ME 233 Advanced Control I
Lecture 23

Direct Adaptive Pole Placement, and
Tracking Control



Direct vs. Indirect Adaptive Control

Both use pole-placement, tracking control and deterministic
disturbance rejection controller synthesis methodology.

Indirect adaptive control:

1. Plant parameters are estimated using a RLS PAA.

2. Controller parameters are calculated using the certainty
equivalence principle.

— Use with plants that have non-minimum phase zeros.
(Plant unstable zeros are not cancelled).

Direct adaptive control:

1. Controller parameters are updated directly using a RLS
PAA.

— Use with plants that do not have non-minimum phase
zeros. (Plant zeros are cancelled).



Direct Adaptive Control

1. Plants with minimum phase zeros and
no disturbances:

« Controller design (review)
1. Controller PAA

2. Adaptive Controller

2. Plants with minimum phase zeros and
constant disturbances:

« Read section: Direct adaptive control with
Integral action for plants with stable zeros
In the ME233 class notes, part Il.



Deterministic SISO ARMA models

SISO ARMA model

Al Y y(k) = ¢ B(g™ 1) u(k)

Where all inputs and outputs are scalars:
« u(k) control input

Yy ( k ) output

d is the known pure time delay



Deterministic SISO ARMA models

A(g D y(k) = ¢ 9 B(@ Y u(k)

Where polynomials:

Al = 14a1g 4+ Fang™

B¢l = bo+bigt+- Fbmg™

are co-prime and B(¢~ 1) is anti-Schur



Control Objectives

1. Pole Placement: The poles of the closed-loop
system must be placed at specific locations in the
complex plane.

« Closed-loop pole polynomial:

Al = B(g™) A(¢™ D)

/
—1
Ac(q ) anti-Schur polynomial chosen by the designer

/

/ . / . / —
Ac(q 1) :i_l_ aclq 1 _I_ tte _|_ a’cn’cq e



Control Objectives

2. Tracking: The output sequence y(k) must follow a
reference sequence y, (k) which is known

« Reference model:

A YDya(ke) = ¢ 9 Bi(a™ 1) ug(k)

W here:

Ud (k) known reference input control input sequence
/ R
. Ac(q 1) (from the previous slide)

—1
. Bm(q ) zero polynomial, chosen by the designer



Control Law

« Feedback and feedforward actions:

d(k) =0
KA Py o L e | 0O
R(q) AT
) feedforward ’
S(q) |+
u(k) = ——— [r(k) — S(g~ Dy (k)|
R(g~1)
r(k) = ¢4 ya(k) = Bm(qg~Huq(k)
Y.
7 “Bm(a D) Feedforward is causal

Ai(q™1)



Feedback Controller

Diophantine equation: Obtain polynomials R (¢~ ), S(¢~1)
that satisfy:

/ /
/ /
Al =A@ HR@H+q 9S8
t t t
I I I
Closed-loop Plant poles Plant pure delays

poles

R(¢H =R YHB(Y

A = B¢ Y AL(gY)




Diophantine equation

Al =A@ HR (@ H+q 9SG

Solution:

/

/ /
R(¢™) = 1+mg '+ dra™

S(g7Y) = so+s1g 4+ spg™

Ns

n; = d-1

max{n—l,n,c—d}
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where

u(k) =

Feedback Controller

1

R(q—1)

(k) — S(g Hy(k)

R(¢H =R YHB(Y

/
nr

Ns

d—-1

max{n—l,n/c—d}
/

Ny =N, +m
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Closed-loop dynamics

Jd(k) =0
u, (k) r(k) + u(k) d y(k)
4 B,(q") . . ]1 N |2 B() s
R(q) AT
feedforward
S(q) |+
e —1 _ —d
Alg ) ylk) = g " r(k)

¢~ 9Bm (¢~ Hug(k)

A1) ya(k)

A(g) {y(k) — ya(k)} = O




Direct Adaptive Control

1. Plants with minimum phase zeros and
no disturbances:

« Controller design

1. Controller PAA

2. Adaptive Controller
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Controller parameters

We want to identify the controller polynomials
R(g™ 1) S(g™1)
directly, where

R(¢H =R (¢ Y B

R(g™ 1) = Jo 11 i SRR R S
—b,

S(gHY =so+s1qg + -+ sn, g™
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Controller parameters
Start with the Diophantine equation

Ag D =AG DR @Y +¢ 95

Multiply both sides by y(k)

A D yk) =R () Al V) y(k) + ¢ 95 1) y(k)

15
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Controller parameters

A Dyk) =R (¢ A D yk) + ¢ 95 ) y(k)

Insert plant dynamics

A(g D y(k) = ¢ 9 B(gH) u(k)

A(g Y yk) = q 9 [R (1) Bl uk) + S(g 1) y(k))

!
A(g Y yk) = ¢ 9 [R(g™Y) u(k) + S~ 1) y(k)]
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PAA —version 1

A (g Yyk) = 4 [R(Y) uk) + S 1) y(k))

Filter by 1/Ac (¢ 1) (normally a low-pass filter)

y(k) = R(g™ ) up(k —d) + S(gH) yp(k —d)

1
yr(k) = A,C(q_l)y(k)
wp(k) = — (k)

Aclg™1)



PAA —version 1

y(k) = R(g™ ) up(k —d) + S(gH) ys(k —d)

Is linear in the controller parameters:

y(k) = ¢ (k — d)oc




pr(k) =

o(k)

PAA —version 1

Plant dynamics:

y(k) = ¢ (k — d)o.

— {SO Sng To TnT]T - RNC
1
AR M
y(k) - y(k—ns) u(k) - ulk—nr)

Ne

ns + Ny + 2

}T
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PAA —version 1

Plant dynamics:

y(k) = ¢ (k — d)o.

RLS PAA:

20

e’(k+ 1) = y(k + 1) — ¢} (k — d + 1)8(k)

A1(k)
A (k) + @7 (k—d+ 1)F(k)ds(k —d+1)
1
A1(k)

e(k+1) = e’(k+1)

ég(k +1) = gc(k) +

F(k)és(k —d + De(k + 1)

_ T(
F(k+1) = F(k) — Mo (k) F(k)oy(k —d+ 1)y (k —d + 1) F(k)

A1 (k) A1 (k) + (k)¢ f (k —d + 1) F(k)gs(k —d + 1)
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PAA — version 2

Aa D y(k) = ¢4 [R(g™H ulk) + S(g™1) y (k)]

“a

n(k) = A(a 1) y(k) filtered output signal

n(k) = ¢" (k —d)bc

c RNe

o) = [y(k) - ylh—ns) u(k) - ulk—n) |



PAA — version 2

Plant dynamics:

n(k) = ¢' (k —d)be

RLS PAA:

22

e(k+1) =nk+1) — ¢ (k—d+ 1)0.(k)

_ A1 (k) 0
) = e ¥ T th—d+ DFR) ek —d+ 1) P T D
G2k + 1) = 8u(k) + 5y )6k = d + D+ 1)
_ T
F(k+1) = FOk) — Ao(k)— L RE(k —d + 1) (k —d + 1) F(k)

A1(k) A1(k) + Ao(k)ol (K —d + 1) F(k)p(k —d + 1)
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PAA — version 1 Vs version 2

o A/C(q_l) IS normally a high-pass filter

. 1/A/c(q_1) is normally a low-pass filter

Bode Diagram

5

Example

A(gh = (1-.5¢71)?

Magnitude (dB)

Version 1 is preferable

1
= e

e
filters high frequency
noise

¢(k)

Phase (deg)




PAA projection
PAA: Projection
ro(k)
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C O

N\

[ 39(k) -39, (B byino - 75, (R) | iF
1

?g(k) < bmino

I
Replace 75(k) by bnino if it becomes too
small.

Control law will divide by 7,(k) . Thus, the projection
algorithm prevents the control action from becoming too
large.
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PAA Gain matrix

Gain matrix:

— T o
F(k) — Ao(k) F(k)¢p(k —d+1)ép(k—d+1)F(k)

Fk+1) = A (k) A1 (k) + Ao (k)¢p (k —d + 1) F(k)¢p(k —d + 1)

0 < M((k)<1
0 < M(k)<?2

are adjusted so that the maximum singular value of F(k) is
uniformly bounded, and

0 < Kmin < Amin {F(k)} < Amax {F(k)} < Kmaz < 00.



Direct Adaptive Control

1. Plants with minimum phase zeros and no
disturbances:

« Controller design

1. Controller PAA

2. Adaptive Controller
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Fixed Controller
\d(k)

u (k) e r(k) + ; u(k) +
e ——_— q > >

) l R(q) AT

S(q)

R(g~ ") u(k) = Bm(q~ ") ug(k) — S(g~ Hy(k)

!

Use this equation to solve for u(k)

7B} (®) X

27



u (k)

B,(a7)

Adaptive Controller

r(k) +

1

u(k) +

d(k)

-d )
| 9°B@)

y(k)

| R, k)

S(q™% k)|

A(T)

R(qg ', k) u(k) = Bm(q~ ") ug(k) — S(g~*, k)y(k)

Use this equation to solve for u(k)



Fixed Controller
\d(k)

Lfi(k) Bm( 1) r(k) + qu(q5 y(k)
—_— q > >

) l R(q) AT

S(q)

1 u(k) +

R(g~ ") u(k) = Bm(q~ ") ug(k) — S(g~ Hy(k)

S(gHy(k) + R(g™ 1) w(k) = Bm(qg™ 1) ug(k)

T (k)0e = B (g~ Hug(k)
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u (k) ;
— | B,@q)

Adaptive Controller

r(k) +

d(k)
1| R+ 7“B(g’)

y(k)

R(q) | acd)

Sca) |-

R(qg ", k) u(k) = Bm(q~ ") ug(k) — S(g~*, k)y(k)

o1 (k)Bc(k) = Bm(q™ Hug(k)
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Direct Adaptive Control

1. Plants with minimum phase zeros and no
disturbances:

« Controller design
1. Controller PAA

2. Adaptive Controller

2. Plants with minimum phase zeros and
constant disturbances:

« Read section: Direct adaptive control with
Integral action for plants with stable zeros
In the ME233 class notes, part Il.
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