ME 233 Advanced Control II

Lecture 22

Indirect Adaptive Pole Placement, Disturbance Rejection and Tracking Control

Adaptive Control

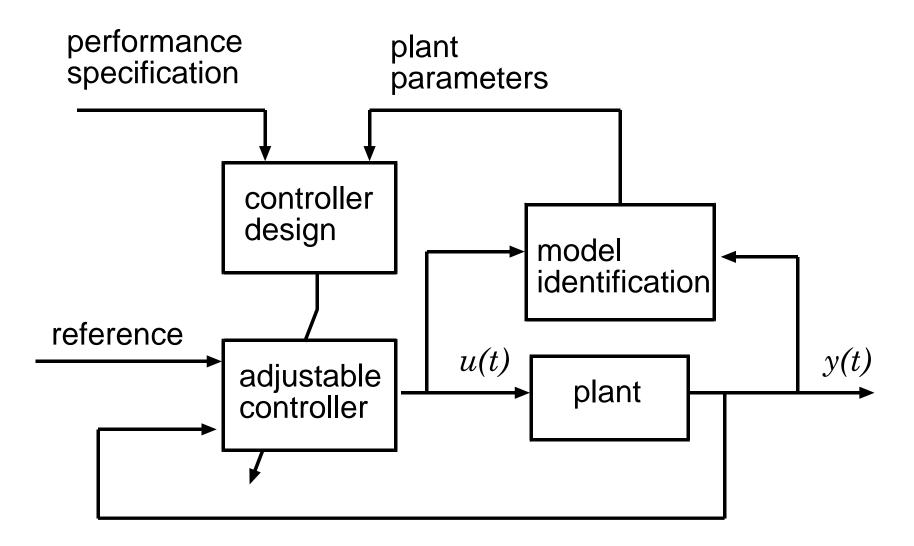
Adaptive Control Principle

Controller parameters **are not constant**, rather, they are adjusted in an online fashion by a *Parameter Adaptation Algorithm (PAA)*

When is adaptive control used?

- Plant parameters are unknown
- Plant parameters are slowly time varying

Self-Tuning Regulator (STR):



Self-tuning Regulator Approach

- Control Design Procedure:
 - Pole-placement, tracking control and deterministic disturbance rejection for ARMA models (Lecture 16).
- Model Identification:
 - Series-parallel with Recursive Least
 Squares (RLS) identification with or without forgetting factor.

Certainty Equivalence Principle

Use pole-placement, tracking control and deterministic disturbance rejection controller synthesis methodology.

- 1. Estimate plant parameters using RLS PAA.
- 2. Controller parameters are re-calculated at every sample instance by assuming that the latest plant parameters estimates are the real parameters.

Direct vs. Indirect Adaptive Control

• Both use pole-placement, tracking control and deterministic disturbance rejection controller synthesis methodology.

• Indirect adaptive control:

- 1. Plant parameters are estimated using a RLS PAA.
- 2. Controller parameters are calculated using the certainty equivalence principle.
- Use with plants that have non-minimum phase zeros.
 (Plant unstable zeros are not cancelled).
- Direct adaptive control:
 - 1. Controller parameters are updated directly using a RLS PAA.
 - Use with plants that do not have non-minimum phase zeros. (Plant zeros are cancelled).

Outline

- 1. Review lecture 16: Pole-placement, tracking control and deterministic disturbance rejection for ARMA models.
- 2. Formulate the plant's Parameter Adaptation Algorithm (PAA).
- 3. Implement an indirect adaptive controller, using the certainty equivalence principle.
- 4. For plants with minimum phase zeros, we will simplify the indirect adaptive controller.

Deterministic SISO ARMA models

SISO ARMA model

$$A(q^{-1}) y(k) = q^{-d} B(q^{-1}) [u(k) + d(k)]$$

Where all inputs and outputs are scalars:

- u(k) control input
- d(k) deterministic but unknown disturbance
- y(k) output

Deterministic SISO ARMA models

$$A(q^{-1}) y(k) = q^{-d} B(q^{-1}) [u(k) + d(k)]$$

Where polynomials:

$$A(q^{-1}) = 1 + a_1 q^{-1} + \dots + a_n q^{-n}$$
$$B(q^{-1}) = b_o + b_1 q^{-1} + \dots + b_m q^{-m}$$

are co-prime and **d** is the **known** pure time delay

Deterministic SISO ARMA models

We factor the zero polynomial as:

$$B(q^{-1}) = B^s(q^{-1}) B^u(q^{-1})$$

where

$$B^{s}(q^{-1})$$
 is anti-Schur

$$B^u(q^{-1})$$
 has the zeros that we **do not want to cancel**

Control Objectives

- 1. <u>Pole Placement</u>: The poles of the closed-loop system must be placed at specific locations in the complex plane.
- Closed-loop polynomial:

$$A_c(q^{-1}) = B^s(q^{-1}) A'_c(q^{-1})$$

Where:

• $B^{s}(q^{-1})$ cancelable plant zeros • $A_{c}^{\prime}(q^{-1})$ anti-Schur polynomial of the form $A_{c}^{\prime}(q^{-1}) = 1 + a_{c1}^{\prime}q^{-1} + \dots + a_{cn_{c}^{\prime}}^{\prime}q^{-n_{c}^{\prime}}$

Control Objectives

2. <u>**Tracking**</u>: The output sequence y(k) must follow a *reference* sequence $y_d(k)$ which is known

In general, $y_d(k)$ can be generated by a reference model of the form

$$A_m(q^{-1})y_d(k) = q^{-d} B_m(q^{-1}) u_d(k)$$

anti-Schur polynomial

The design of $A_m(q^{-1})$ and $B_m(q^{-1})$ is not a part of this control design technique and these polynomials do not enter into the analysis

Control Objectives

- **3.** <u>**Disturbance rejection**</u>: The closed-loop system must reject a class of <u>persistent</u> disturbances d(k)
- Disturbance model:

$$A_d(q^{-1})d(k) = 0$$

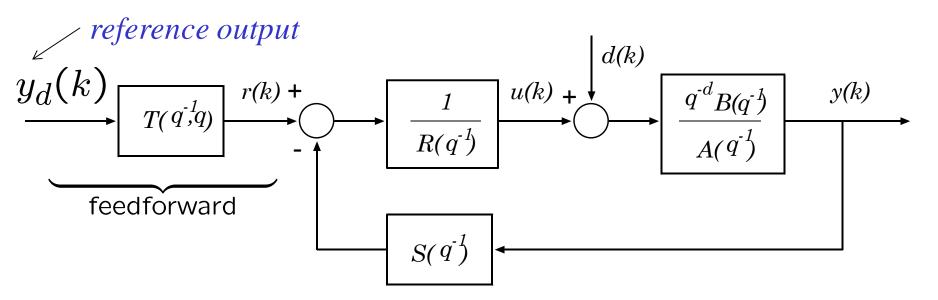
Where

• $A_d(q^{-1})$ is a **known** annihilating polynomial with zeros on the unit circle

•
$$A_d(q^{-1}), B(q^{-1})$$
 are co-prime

Control Law

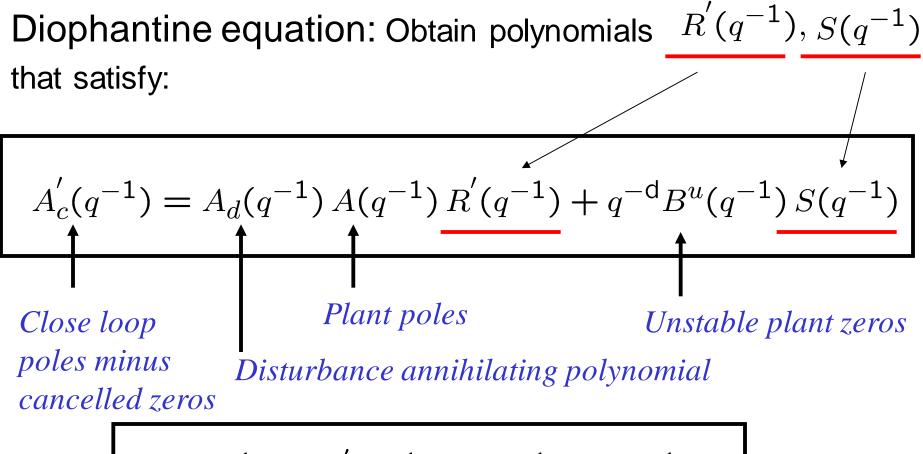
• Feedback and feedforward actions:



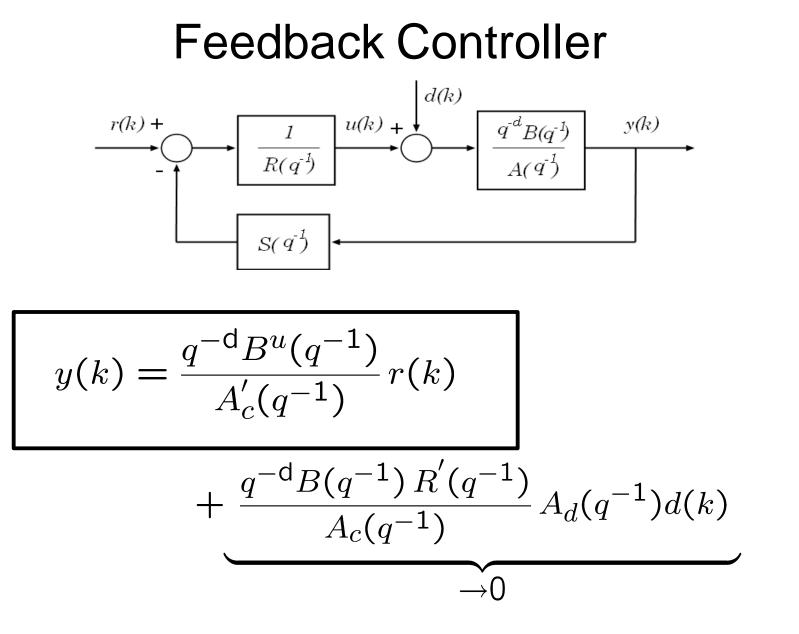
$$u(k) = \frac{1}{R(q^{-1})} \left[r(k) - S(q^{-1})y(k) \right]$$

$$r(k) = T(q^{-1}, q) y_d(k)$$
 Feedforward action
(a-causal)

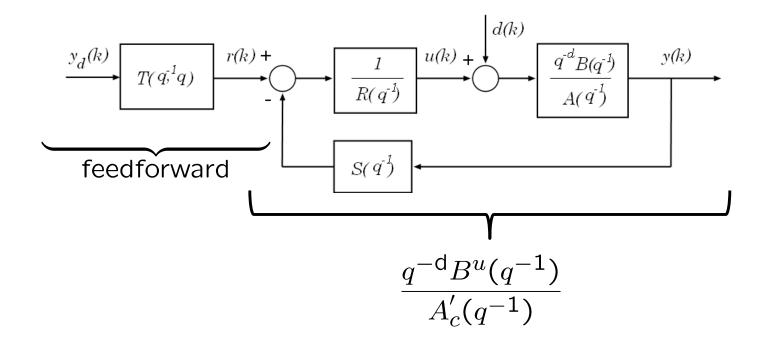
Feedback Controller



$$R(q^{-1}) = R'(q^{-1}) A_d(q^{-1}) B^s(q^{-1})$$
$$A_c(q^{-1}) = B^s(q^{-1}) A'_c(q^{-1})$$



Zero-phase error feedforward



$$T(q^{-1},q) = A'_c(q^{-1}) q^{+d} \frac{B^u(q)}{[B^u(1)]^2}$$

Outline

- 1. Review lecture 16: Pole-placement, tracking control and deterministic disturbance rejection for ARMA models.
- 2. Formulate the plant's Parameter Adaptation Algorithm (PAA).
- 3. Implement an indirect adaptive controller, using the certainty equivalence principle.
- 4. For plants with minimum phase zeros, we will simplify the indirect adaptive controller.

Certainty Equivalence Principle

Use pole-placement, tracking control and deterministic disturbance rejection controller synthesis methodology.

- Estimate plant parameters using RLS PAA: Polynomial estimates: $\hat{A}(q^{-1},k) = \hat{B}(q^{-1},k)$
- $\hat{R}'(q^{-1},k) \quad \hat{S}(q^{-1},k)$ $\hat{T}(q,q^{-1},k)$ Controller polynomials Feedforward compensator $\widehat{A}(q^{-1},k) \quad \widehat{B}(q^{-1},k)$

are computed using

19

Parameter Adaptation Algorithm (PAA)

- 1. Use a series-parallel RLS algorithm to estimate plant parameters.
- 2. Pre-filter input u(k) and output y(k) using the disturbance annihilating polynomial, to prevent parameter biasing.
- 3. Use "parameter projection" to prevent unbounded control input

PAA: sequence pre-filtering

Plant dynamics:

$$A(q^{-1}) y(k) = q^{-d} B(q^{-1}) [u(k) + d(k)]$$

Disturbance:

$$A_d(q^{-1})d(k) = 0$$

Filtered input and output sequences:

$$y_f(k) = A_d(q^{-1}) y(k)$$

 $u_f(k) = A_d(q^{-1}) u(k)$

PAA: sequence pre-filtering

Multiply plant dynamics by annihilating polynomial:

$$A(q^{-1}) \underbrace{A_d(q^{-1})y(k)}_{y_f(k)} = q^{-\mathsf{d}} B(q^{-1}) \left[\underbrace{A_d(q^{-1})u(k)}_{u_f(k)} + \underbrace{A_d(q^{-1})d(k)}_{=0} \right]$$

$$A(q^{-1}) y_f(k) = q^{-d} B(q^{-1}) u_f(k)$$

PAA: series parallel RLS

Filtered plant dynamics

$$A(q^{-1}) y_f(k) = q^{-d} B(q^{-1}) u_f(k)$$

Can be written as

$$y_f(k) = \phi_f(k-1)^T \theta$$

Where:

$$\theta = \begin{bmatrix} a_1 & \cdots & a_n & b_0 \cdots & b_m \end{bmatrix}^T \in \mathcal{R}^{n+m+1}$$

 $\phi_f(k-1) = \begin{bmatrix} -y_f(k-1) & \cdots & -y_f(k-n) & u_f(k-d) & \cdots & u_f(k-d-m) \end{bmatrix}^T$

PAA: parameter projection

Assume that we know:

1. Minimum magnitude of DC gain of $B^u(q^{-1})$

$$|B^u(1)| \geq B^u_{\min} > 0$$

2. Sign and minimum value of leading coefficient of $B(q^{-1}) = b_o + \dots + b_m q^{-m}$

$$b_o \geq b_{mino} > 0$$

Series parallel RL with projection

PAA:

$$e^{o}(k+1) = y_{f}(k+1) - \phi_{f}^{T}(k)\hat{\theta}(k)$$

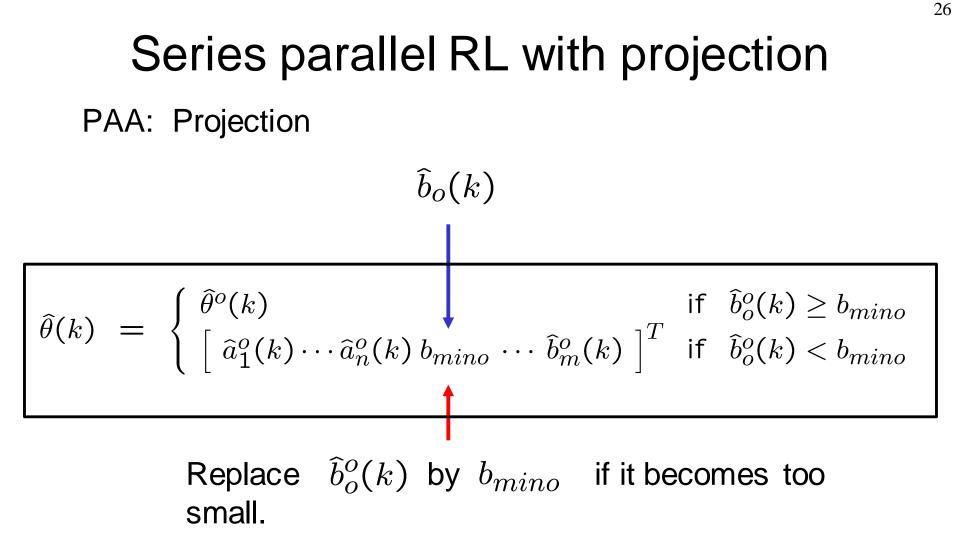
$$e(k+1) = \frac{\lambda_{1}(k)}{\lambda_{1}(k) + \phi_{f}^{T}(k)F(k)\phi_{f}(k)}e^{o}(k+1)$$

$$\hat{\theta}^{o}(k+1) = \hat{\theta}(k) + \frac{1}{\lambda_{1}(k)}F(k)\phi_{f}(k) e(k+1)$$

$$F(k+1) = \frac{1}{\lambda_{1}(k)} \left[F(k) - \lambda_{2}(k)\frac{F(k)\phi_{f}(k)\phi_{f}^{T}(k)F(k)}{\lambda_{1}(k) + \lambda_{2}(k)\phi_{f}^{T}(k)F(k)\phi_{f}(k)}\right]$$

 $0 < \lambda_1(k) \le 1$ $0 \le \lambda_2(k) < 2$

 $\hat{\theta}^{o}(k+1)$: A-priori parameter estimate (prior to projection)



Outline

- 1. Review lecture 16: Pole-placement, tracking control and deterministic disturbance rejection for ARMA models.
- 2. Formulate the plant's Parameter Adaptation Algorithm (PAA).
- 3. Implement an indirect adaptive controller, using the certainty equivalence principle.
- 4. For plants with minimum phase zeros, we will simplify the indirect adaptive controller.

After each PAA iteration:

1) Update
$$\widehat{A}(q^{-1},k)$$
 $\widehat{B}(q^{-1},k)$ polynomials:

$$\widehat{A}(q^{-1},k) = 1 + \widehat{a}_1(k) q^{-1} + \dots + \widehat{a}_n(k) q^{-n}$$

$$\widehat{B}(q^{-1},k) = \widehat{b}_o(k) + \widehat{b}_1(k) q^{-1} + \dots + \widehat{b}_m(k) q^{-m}$$

2) Factorize $\hat{B}(q^{-1},k)$ polynomial:

$$\hat{B}(q^{-1},k) = \hat{B}^s(q^{-1},k)\hat{B}^u(q^{-1},k)$$

 $\hat{B}^{u}(q^{-1},k)$: has constant coefficient 1

3) Calculate controller polynomials:

$$\hat{R}'(q^{-1},k) \qquad \hat{S}(q^{-1},k)$$

by solving the Diophantine equation:

$$A'_{c}(q^{-1}) = A_{d}(q^{-1})\hat{A}(q^{-1},k)\hat{R}'(q^{-1},k) + q^{-d}\hat{B}^{u}(q^{-1},k)\hat{S}(q^{-1},k)$$
Plant parameter polynomial estimates are used instead of actual polynomials

4) Calculate feedforward filter: $\hat{T}(q^{-1}, q, k)$

$$\widehat{T}(q^{-1}, q, k) = \frac{q^{+d} A'_c(q^{-1}) \widehat{B}^u(q, k)}{[\overline{B}^u(k)]^2}$$

Where:

$$\bar{B}^{u}(k) = \begin{cases} \hat{B}^{u}(1,k) & \text{if } |\hat{B}^{u}(1,k)| \ge B^{u}_{\min} \\ B^{u}_{\min} & \text{if } |\hat{B}^{u}(1,k)| < B^{u}_{\min} \\ & \uparrow \\ \end{cases}$$
Replace $\hat{B}^{u}(1,k)$ by B^{u}_{\min}
if it becomes too small

٠

5) Calculate polynomial: $\widehat{R}(q^{-1},k)$

$$\widehat{R}(q^{-1},k) = A_d(q^{-1}) \,\widehat{B}^s(q^{-1},k) \,\widehat{R}'(q^{-1},k)$$

Notice that $A_d(q^{-1})$ and $\hat{R}'(q^{-1},k)$ each have constant coefficient 1

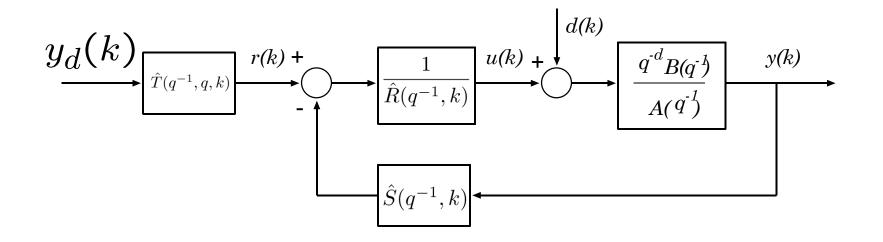
Thus,

$$\widehat{R}(q^{-1},k) = \widehat{r}_0(k) + \widehat{r}_1(k)q^{-1} + \dots + \widehat{r}_{n_r}(k)q^{-n_r}$$

has constant coefficient $\hat{r}_0(k) = \hat{b}_o(k) \ge b_{mino}$

6) Adaptive control law is given by:

$$\widehat{R}(q^{-1},k) u(k) = \widehat{T}(q^{-1},q,k) y_d(k) - \widehat{S}(q^{-1},k) y(k)$$



Outline

- 1. Review lecture 16: Pole-placement, tracking control and deterministic disturbance rejection for ARMA models.
- 2. Formulate the plant's Parameter Adaptation Algorithm (PAA).
- 3. Implement an indirect adaptive controller, using the certainty equivalence principle.
- 4. For plants with minimum phase zeros, we will simplify the indirect adaptive controller.

After each PAA iteration:

1) Update $\widehat{A}(q^{-1},k)$ $\widehat{B}(q^{-1},k)$ polynomials:

$$\widehat{A}(q^{-1},k) = 1 + \widehat{a}_1(k) q^{-1} + \dots + \widehat{a}_n(k) q^{-n}$$

$$\hat{B}(q^{-1},k) = \hat{b}_o(k) + \hat{b}_1(k) q^{-1} + \dots + \hat{b}_m(k) q^{-m}$$

• (no need to factorize $\widehat{B}(q^{-1},k)$)

2) Calculate controller polynomials:

$$\hat{R}'(q^{-1},k) \qquad \hat{S}(q^{-1},k)$$

by solving the Diophantine equation:

$$A'_{c}(q^{-1}) = A_{d}(q^{-1})\widehat{A}(q^{-1},k)\widehat{R}'(q^{-1},k) + q^{-d}\widehat{S}(q^{-1},k)$$

Plant parameter polynomial estimates are used instead of actual polynomials

• Feedforward filter $T(q^{-1},q)$ is **constant and known**

$$T(q^{-1},q) = q^{+d}A'_c(q^{-1})$$

Thus, there is no need to update it at every sample step.

3) Calculate polynomial: $\widehat{R}(q^{-1},k)$

$$\widehat{R}(q^{-1},k) = A_d(q^{-1}) \,\widehat{B}(q^{-1},k) \,\widehat{R}'(q^{-1},k)$$

Notice that both $A_d(q^{-1})$ and $\hat{R}'(q^{-1},k)$ have constant coefficient 1

Thus,

$$\widehat{R}(q^{-1},k) = \underbrace{\widehat{r}_{o}(k)}_{= \widehat{b}_{o}(k)} + q^{-1}\widehat{r}_{1}(k) + \dots + q^{-n_{r}}\widehat{r}_{n_{r}}(k)$$

$$\stackrel{\uparrow}{=} \underbrace{\widehat{b}_{o}(k)}_{\bullet}$$
This coefficient is always $\geq b_{mino}$

4) Adaptive control law is given by:

$$\widehat{R}(q^{-1},k) u(k) = A'_c(q^{-1}) y_d(k+d) - \widehat{S}(q^{-1},k) y(k)$$

