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ME 233 Advanced Control II

Lecture 21

Parameter Convergence in 

Least Squares Estimation

and

Persistence of Excitation
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Where

• known bounded input

• measured output

Estimation of ARMA  model
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Where

Estimation of ARMA  model

• Orders n and m are known

• Relative degree d is known

• a’s and b’s are unknown but constant coefficients

(anti-Schur)
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Unknown 

parameter vector:

ARMA  Model

Known regressor vector:

n

m+ 1

n+m+1



ARMA series-parallel estimation

• A-priori output

5

• A-priori error



ARMA series-parallel estimation
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• A-priori error

• Parameter error
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RLS Estimation Algorithm
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Overview
• In Lecture 20 we learned how to analyze the 

stability of adaptive systems and proved:

– Convergence of the output error 

• Today we will provide conditions on the input 

sequence                  that guarantee that

also converges to zero.
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Parameter error convergence

• Remember that 

It can be shown that the  n+m+1 parameter error 

also converges:

n

m+ 1
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Parameter error convergence

The steady-state parameter error satisfies

n

m+ 1

Regressor
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Parameter error convergence

The steady-state parameter error satisfies

Where the  regressor correlation

is:
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Parameter error convergence

Since the steady-state parameter error satisfies

The regressor vector              is persistently exciting if



Persistence of Excitation
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We need to find the conditions that the input 

sequence u(k) must satisfy to guarantee 

that            is persistently exciting. 

y(k)-dq B(   )-1q

A(    )
-1q

+

- y(k)^

e(k)

u(k)

Parameter

Adaptation

Algorithm

regressor

n

m+ 1

q¡ 1B(q¡ 1)

A(q¡ 1)



Excitation matrix

Given an input sequence 
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Define the u-regressor of order n:

only present and past

values of u(k) are used



Excitation matrix

Given an input sequence 
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Define the n x n excitation matrix:

Time average of 



Persistence of Excitation (PE)
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The input sequence u(k)

is persistently exciting of order n if

the n x n excitation matrix is positive definite 



is persistently exciting (PE)  of order n iff

the following holds for all nonzero polynomials                      

of order at most n-1
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PE inputs in FIR models

Theorem:

where

w(k) is PE of order 1



PE inputs in FIR models

Alternate statement of Theorem:

The following are equivalent:

• u(k) is PE of order n

• A(q -1)u(k) is  PE of order 1 for all nonzero 

polynomials A(q -1) of degree at most n-1
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PE inputs in FIR models

Proof: Let

Then
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PE inputs in FIR models

Proof (cont’d):
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PE inputs in FIR models

Proof (cont’d):

Since U = aTCna, we see that U > 0,  

if and only if                .

Therefore, U > 0 for all nonzero 

polynomials A(q -1) of order at most n-1

if and only if
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PE inputs in FIR models

To determine the PE order of a sequence

1. Find a nonzero polynomial                  of order n 

such that A(q -1)u(k) is not PE of order 1

this means that            is PE of order at most n

2. Compute the excitation matrix            and verify 

that it is positive definite. 



Conditions for PE 
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u(k) is not PE of 

order 2

u(k) is PE of 

order 1

Examples: Constant input



24

Conditions for PE in FIR Models

Examples: Sinusoid input

u(k) is not PE of 

order 3
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Conditions for PE in FIR Models

Examples: Sinusoid input



26

Conditions for PE in FIR Models

Examples: Sinusoid input

u(k) is not PE 

of order 3

u(k) is PE of 

order 2
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Conditions for PE in FIR Models

Examples: Sum of Sinusoids



28

Conditions for PE in FIR Models

Examples: Random process
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PE in Filtered Signals

Filtered signals:

Let
•

• v(k) be the output of the model

• A(q -1) is a nonzero polynomial of degree m < n
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PE in Filtered Signals

Filtered signals:

•

• Let

•



PE in Filtered Signals

Let v(k) be the output of the model

where A(q -1) is a nonzero polynomial

1. If u(k) is not PE of order n, then v(k) is not PE of 

order n

2. If u(k) is PE of order n and A(q -1)  has degree m < n, 

then v(k) is PE of order n-m

3. If A(q -1) is anti-Schur, then u(k) is PE of order n if 

and only if v(k) is PE of order n
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Theorem



Interpretation of Theorem

1.

2.
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Not PE of 

order n

Not PE of 

order n

PE of 

order n

PE of 

order n-m

order m<n



Interpretation of Theorem

3. When A(q -1) anti-Schur
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Not PE of 

order n

Not PE of 

order n

Not PE of 

order n

Not PE of 

order n

(this is redundant 

with part 1 of the 

theorem)



PE in Filtered Signals

Preliminary result 1:

If u(k) is not PE of order 1, then v(k) is not PE of order 1

Proof:
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Let



PE in Filtered Signals

Proof of preliminary result 1 (continued):
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Since u(k) is not PE of order 1, C1 = 0

The diagonal elements of Cn are zero

Since                 , this implies that Cn = 0

U = 0, which implies that v(k) is not PE of order 1



PE in Filtered Signals

Preliminary result 2:

If A(q -1) is anti-Schur and v(k) is not PE of order 1,

then is not PE of order 1

36

The proof is based on frequency domain techniques for 

deterministic signals that are analogous to power spectral 

density techniques for wide sense stationary random signals

(see the additional material at the end of this lecture)



PE in Filtered Signals

Proof of (1):

37

Let u(k) not be PE of order n

Choose nonzero B(q -1) of degree at most n-1 such 

that w(k) = B(q -1) u(k)  is not PE of order 1

By the preliminary result, A(q -1) w(k)  is not PE 

of order 1, which implies that B(q -1) v(k)  is not 

PE of order 1

v(k) is not PE of order n



PE in Filtered Signals

Proof of (2):
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Let u(k) be PE of order n and A(q -1)  have degree m < n

Suppose B(q -1)v(k) is not PE of order 1 where 

B(q -1) has order at most n-m-1

B(q -1)A(q -1)u(k) is not PE of order 1

Since B(q -1)A(q -1) has order at most n-1 and u(k) is 

PE of order n, B(q -1)A(q -1) is the zero polynomial

Since A(q -1) is a nonzero polynomial,

B(q -1) is the zero polynomial

v(k) is PE of order n-m



PE in Filtered Signals

Proof of (3):
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By statement (1) of the theorem, if u(k) is not PE of 

order n, then v(k) is not PE of order n

It only remains to show that if v(k) is not PE of order n, 

then u(k) is not PE of order n

Let v(k) not be PE of order n and choose nonzero     

B(q -1) of order at most n-1 such that w(k)= B(q -1)v(k) is 

not PE of order 1

This implies that A(q -1)B(q -1)u(k) is not PE of order 1



PE in Filtered Signals

Proof of (3), continued:
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A(q -1)B(q -1)u(k) is not PE of order 1

Since A(q -1) is anti-Schur, we use preliminary result 2 

to see that B(q -1)u(k) is not PE of order 1

Since B(q -1) is a nonzero polynomial 

of order at most n-1

u(k) is not PE of order n
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Where

ARMA Model (review)

• Orders n and m are known

• Relative degree d is known

• a’s and b’s are unknown but constant coefficients

(anti-Schur)
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Unknown 

parameter vector:

ARMA  Model (review)

Known regressor vector:

n

m+ 1

n+m+1
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PE in ARMA models

Theorem:

•

•

•

Parameter estimates convergence to the true values
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PE in ARMA models - Proof

Simplifying assumption: the parameter error converges

Define: the LS output estimation error by

We know that
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PE in ARMA models - Proof
Notice that,

Therefore, if we can show that Cn+m+1 0, we will be able to 

conclude that  
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PE in ARMA models - Proof

Notice that

where
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PE in ARMA models - Proof

From

We obtain
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PE in ARMA models - Proof

Polynomial of order n+m

Notice that since                                                and                        
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PE in ARMA models - Proof

•

•

Polynomial of order n+m

Since e(k) = 0, it cannot be PE of order 1

Therefore,  
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PE in ARMA models - Proof

So far, we know that if

then 

where
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PE in ARMA models - Proof

This equation can be written as follows:

and:

where
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PE in ARMA models - Proof
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PE in ARMA models - Proof

Therefore, when

Parameter estimates convergence to the true values



Example

• Plant:

54

• We need u(k) to be a PE sequence of order 4

to guarantee parameter convergence
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Example: Input Random Noise

u(k) : zero mean uniform white noise between [-1,1] 
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parameter convergence

a-priori error
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Example: Step Input 

u(k) = 2*1(t)
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a-priori error

NO parameter convergence
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Example: Sinusoidal input – 1 frequency

u(k) = 2*sin(t)
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NO parameter convergence

a-priori error
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Example: Sinusoidal input – 2 frequencies

u(k) = 2*sin(t)+2cos(2*t)
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parameter convergence

a-priori error



Additional Material

(you are not responsible for this)

• Proof of preliminary result 2

59



PE in Filtered Signals

Preliminary result 2:

If A(q -1) is anti-Schur and v(k) is not PE of order 1,

then is not PE of order 1

60

The proof is based on frequency domain techniques for 

deterministic signals that are analogous to power spectral 

density techniques for wide sense stationary random signals



Stochastic and Deterministic Signals
61

WSS zero-mean random 

signals, X(k) and Y(k) Deterministic signals, x(k) and y(k)

Average value of x(k+j)yT(k) over k



Stochastic and Deterministic Signals
62

where G(z) is stable 

WSS zero-mean random 

signals, U(k) and Y(k)

Deterministic signals, 

u(k) and y(k)

Scalar U(k) 

and Y(k)

Scalar u(k) 

and y(k)



Proof of Preliminary Result 2

Let 

• A(q -1) be anti-Schur

• v(k) not be PE of order 1

• u(k) be generated by

Choose M such that

63

stable



Proof of Preliminary Result 2
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Therefore, we have



Proof of Preliminary Result 2
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v(k) not PE of order 1 

u(k) not PE of order 1 
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PE inputs  

To determine the PE order of a sequence

1. Find an annihilating  polynomial                  of 

order n such 

this means that            is at most PE of order n

2. Compute the excitation matrix             

and verify that it is positive definite. 



Persistence of excitation for 

ARMA model identification

67

We need to find what conditions must the input 

sequence u(k) satisfy so that            is 

persistently exciting. 

y(k)-dq B(   )-1q

A(    )
-1q

+

- y(k)^

e(k)

u(k)

Parameter

Adaptation

Algorithm

regressor

n

m+ 1



PE in ARMA models
Given:

68

• u(k) is bounded

• is Schur • and                   are co-prime

n

m+ 1
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Derivation of Results
1. Determine conditions on the input sequence

• For the parameter convergence of a  Moving 

Average (MA) model

• For the parameter convergence of an ARMA 

model
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Statistical Interpretation of LS Estimation

Stochastic Model

Where

• observed output  

• zero-mean noise

•

•

regressor

unknown parameter vector
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Statistical Interpretation of LS Estimation

Assumptions:

• zero-mean 

• Independence or orthogonality:         

• Ergodicity
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Collect data for k observations:

Statistical Interpretation of LS Estimation
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LS Statistical Interpretation 

Collect data for k observations:

Where

•

•

•

•
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LS Statistical Interpretation
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Deterministic Least Squares Estimation

Parameter estimate after k observations:

Which minimizes the following cost functional:

Notice that                is kept constant in the summation
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Deterministic Least Squares Estimation

: Parameter estimate which minimizes

Is given by the Normal Equation:
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LS Statistical Interpretation

Normal equation:

Stochastic model:

Parameter error vector:
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LS Statistical Interpretation

Substitute the stochastic model

Into the normal equation:

To obtain:
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LS Statistical Interpretation

Notice that

Therefore,
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LS Statistical Interpretation

Assume now that the parameter error converges:

Multiply by  1/k and take limits as 
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LS Statistical Interpretation

By Ergodicity, 
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LS Statistical Interpretation

If               and                    are  independent or orthogonal, 

Since, 
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LS Statistical Interpretation

The parameter error vector satisfies:

Thus, a sufficient condition for                      is that 

(positive definite)
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LS Statistical Interpretation

We now define the Excitation matrix
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LS Statistical Interpretation

Theorem:

Under the conditions: 

•

•

If the excitation matrix                  is positive definite,

the parameter error vector of the least square algorithm 

converges to zero.
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Persistence of Excitation (PE)

There exist finite constants: 

•

•

Persistently exciting regressor:

For all k
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Persistence of Excitation (PE)

Persistently exciting regressor:

for all k

and a fixed m
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PE in Moving Average (MA) models

Finite Impulse Response (FIR) model:

where
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Conditions for PE in FIR Models

Persistently exciting input sequence: 

Is persistently exciting (PE)  of order n

if the regressor vector

is persistently exciting
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Conditions for PE in FIR Models

For a persistently exciting input sequence

with regressor

The excitation matrix Cn is  a  Positive Definite Toeplitz 

matrix


