
1

ME 233 Advanced Control II

Lecture 20

Stability Analysis of a discrete-time 

Series-Parallel Least Squares

Parameter Identification Algorithm
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Where

• known bounded input

• measured output

ARMA  Model
Consider the following  system
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• Orders n and m are known

• a’s and b’s are unknown but constant

coefficients

ARMA  Model

(anti-Schur)
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Where:

ARMA  Model
ARMA model can be written as:



A-posteriori series-parallel estimation model
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Where

• a-posteriori estimate of 

• estimate of            at sampling time k

• estimate of            at sampling time k

Series-parallel estimation model
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Series-parallel estimation model

A-posteriori series-parallel estimation model

Where

• a-posteriori estimate of 
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Series-parallel estimation model

A-priori series-parallel estimation model

Where

• a-priori estimate of 
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Additional Notation

• Unknown parameter vector:

• Parameter vector estimate:

• Parameter error estimate:

• Regressor vector:
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• A-posteriori output estimation error:

• A-priori output estimation error:

Additional Notation
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Parameter Adaptation Algorithm (PAA)

A-posteriori version

• Parameter estimate update

• Gain update 

• We make the restriction
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PAA Special Cases

• Least squares

• Least squares with forgetting factor

• Constant gain



Example

• Plant:
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Example: Constant gain
u(k) : zero mean uniform white noise between [-1,1] 
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parameter convergence
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Example: Least Squares
u(k) : zero mean uniform white noise between [-1,1] 
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parameter convergence

a-priori error
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Example: Least Squares & forgetting factor

u(k) : zero mean uniform white noise between [-1,1] 
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parameter convergence

a-priori error
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Theorem

Under the following conditions:

1. The input u(k) is bounded, i.e. 

2. is anti-Schur

3. Maximum singular value of  F(k) is uniformly bounded

and
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Parameter Adaptation Algorithm (PAA)

Since the unknown parameters are constant and

implies that

the PAA



18

A-posteriori dynamics

• Error dynamics

• PAA
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Equivalent Feedback Loop

G(q)

NL

e(k+1)m(k+1)

w(k+1)

0

-

+
1
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Equivalent Feedback Loop

G(q)

NL

e(k+1)m(k+1)

w(k+1)

0

-

+

NL:

1
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1. Verify that the LTI dynamics are SPR

2 Verify that the PAA dynamics are P-class

Stability analysis using Hyperstability

G(q)

NL

e(k+1)m(k+1)

w(k+1)

0

-

+

1
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1. Verify that the LTI dynamics are SPR

Good News: LTI “very” SPR

G(q)

NL

e(k+1)m(k+1)

w(k+1)

0

-

+

Always SPR

1
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• Unfortunately the NL block is not P-class

Bad News: NL is not P-class

G(q)

NL

e(k+1)m(k+1)

w(k+1)

0

-

+

NL:

1
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NL

e(k+1) s(k+1)w(k+1) - +

NL1

2

2

(k)

• Add a feedback term to NL to make it P-class

Solution: Modify the NL block

NL1:
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NL

e(k+1) s(k+1)w(k+1) - +

NL1

2

2

(k)

• Add a feedback term to NL to make it P-class

Modifying the NL block

NL1:

Proof: See Additional Material at end of this lecture

(the class notes on bSpace are incorrect)
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• Add and subtract the same blocks:

What happens to the feedback structure?

G(q)

NL

e(k+1)m(k+1)

w(k+1)

0
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+

G(q)

NL

e(k+1)m(k+1)

w(k+1)

0
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2
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2
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
2


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+
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-

v(k+1)

s(k+1)

= 0

= 0

=

1

1
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NL

e(k+1)m(k+1)

w(k+1)
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2
(k)

s(k+1)

NL1
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NL2

v(k+1)

G(q)1

• Rearranging blocks,

What happens to the feedback structure?

G(q)

NL

e(k+1)m(k+1)

w(k+1)

0
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
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
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v(k+1)

s(k+1)

=
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NL

e(k+1)m(k+1)

w(k+1)
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• Rearranging blocks,

What happens to the feedback structure?

G(q)

NL
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NL

e(k+1)m(k+1)
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• Rearranging blocks,

What happens to the feedback structure?

G(q)
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e(k+1)m(k+1)

w(k+1)

0

2

2

(k)

2

2

(k)


2


2

- +

+

+

++

+

-

+

-

v(k+1)

s(k+1)

L2

1 1



30

NL

e(k+1)m(k+1)

w(k+1)
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• Rearranging blocks,

What happens to the feedback structure?

G(q)

NL
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NL

e(k+1)m(k+1)

w(k+1)

0
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G(q)

Can we now use Hyperstability Theory?

For Asymptotic 

Hyperstability:

1. L1 must be SPR

2. NL2 must be 

P-class

1
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NL

e(k+1)m(k+1)
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Linear Block L1

Since:1

L1:

L1    is SPR iff
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NL

e(k+1)m(k+1)
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Nonlinear Block NL2

NL2 :

1. NL1 : P-class

2. L2 : P-class

Feedback combination 

of two blocks:

1

Therefore NL2

is P-class
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NL
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Hyperstability Theorem

If

Then

1. L1 is SPR

2. NL2 is P-class

Therefore:

1

The interconnection 

is asymptotically 

hyperstable

for some 
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NL
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Hyperstability Theorem

If

Then

1

for some 
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We have concluded that the a-posteriori output 

error converges to zero:

A-posteriori error convergence

where

What about the a-priori output error?
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• Therefore,                       does not necessarily

imply that

• To prove                       , we need to first show

• Notice that

A-posteriori error convergence
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Therefore, 

Remember that:

Boundedness of the regressor vector

By assumption, 
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and, 

Since

Boundedness of the regressor vector

we only need to show that
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and 

Remember that:

Boundedness of the regressor vector

is anti-Schur.

Therefore LTI system 

is BIBO 

Thus,



Additional Material

(you are not responsible for this)

• Proof that NL1 is P-class

41
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• Recall that the NL block is not P-class

Equivalent feedback loop (review)

G(q)

NL

e(k+1)m(k+1)

w(k+1)

0

-

+

NL:

1
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NL

e(k+1) s(k+1)w(k+1) - +

NL1

2

2

(k)

• Add a feedback term to NL to make it P-class

Solution: Modify the NL block (review)

NL1:

We want to show:



Simplified Notation
44



Proof that NL1 is P-class

• From the summing junction, we have
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NL

e(k+1) s(k+1)w(k+1) - +

NL1

2

2

(k)



Proof that NL1 is P-class

• Multiply the input of NL1 by its output
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NL:



Proof that NL1 is P-class

• From the previous slide
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Define 



Proof that NL1 is P-class

• From the previous slide
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Proof that NL1 is P-class

• From the previous slide

• Therefore
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because because 



Proof that NL1 is P-class

• Now check the Popov inequality

50


