ME233 Advanced Control |
Lecture 1

Dynamic Programming &
Optimal Linear Quadratic Regulators (LQR)

(ME233 Class Notes DP1-DP4)

Outline

. Dynamic Programming

. Simple multi-stage example

. Solution of finite-horizon optimal
Linear Quadratic Reguator (LOR)

Dynamic Programming

Invented by Richard Bellman in 1953
 From IEEE History Center: Richard Bellman:

— “His invention of dynamic programming in
1953 was a major breakthrough in the theory
of multistage decision processes...”

— “A breakthrough which set the stage for the
application of functional equation technigues
in a wide spectrum of fields...”

— “...extending far beyond the problem-areas
which provided the initial motivation for his

jdeas.”

Dynamic Programming

Invented by Richard Bellman in 1953
 From IEEE History Center: Richard Bellman:

—In 1946 he entered Princeton as a graduate
student at age 26.

— He completed his Ph.D. degree in a record
time of three months.

— His Ph.D. thesis entitled “Stability Theory of
Differential Equations" (1946) was
subsequently published as a book in 1953,
and is regarded as a classic in its field.

Dynamic Programming

We will use dynamic programming to derive the
solution of:

« Discrete time LOQR and related problems

* Discrete time Linear Quadratic Gaussian
(LQG) controller.

— Optimal estimation and regulation

Dynamic Programming Example

lllustrative Example:

Find “optimal” path:
From A to B

by moving only to the right.

Dynamic Programming Example

lllustrative Example:

Find “optimal” path:
From A to B

1 9
A B
by moving only to the right. 12

 Number next to line is the
“cost” in going along that
particular path.

Dynamic Programming Example

lllustrative Example:

Find “optimal” path:
From A to B

by moving only to the right.

Dynamic Programming Example

lllustrative Example:

Find “optimal” path:
From A to B

by moving only to the right.

10

Dynamic Programming Example

lllustrative Example:

Find optimal path:
From A to B

by moving only to the right.

 Optimal path from A to B
IS the one with the
smallest overall cost.

 There are 70 possible
routes starting from A.

Dynamic Programming
Key idea:

« Convert a single “large” optimization problem
Into a series of “small” multistage optimization
problems.

— Principle of optimality: “From any point on
an optimal trajectory, the remaining trajectory
IS optimal for the corresponding problem
initiated at that point.”

— Optimal Value Function: Compute the
optimal value of the cost from each state to
the final state.

11

12

Dynamic Programming Example

lllustrative Example:

« Use principle of optimality
« Compute Optimal Value Function and
optimal control at each state

« Start from the final state B

determine the
optimal path
from (@) to B

assume that
we are here...

Dynamic Programming Example

lllustrative Example:

« Use principle of optimality
« Compute Optimal Value Function and
optimal control at each state

« Start from the final state B

two options:
AT 7+9=16

N 11+12=23

13

Dynamic Programming Example

lllustrative Example:

« Use principle of optimality
« Compute Optimal Value Function and
optimal control at each state

« Start from the final state B

Assign:
« optimal path

 optimal cost
16

14

Dynamic Programming Example

lllustrative Example:

« Use principle of optimality
« Compute Optimal Value Function and
optimal control at each state

« Start from the final state B

Continue...
/1 10+ 15=25
N 12+ 16=128

15

Dynamic Programming Example

lllustrative Example:

« Use principle of optimality
« Compute Optimal Value Function and
optimal control at each state

« Start from the final state B

Continue...
/1 10+ 15=25
N 12+ 16=128

16

Dynamic Programming Example

de)
L

Continue until
A IS reached

Optimal cost:

JO(A) = 65

17

LTI Optimal regulators

e State space description of a discrete time LTI
x(k+1) = Ax(k)+ Bu(k)
CL’(O) — Lo

For now, everything is deterministic

+ Find “optimal” control ©°(k), k=0,1,2 ---

N

In some sense, to be defined later ...

« That drives the state to the origin

r— 0

18

19

Finite Horizon LQ optimal regulator

Consider the nth order discrete time LTI system:
w(k+1) = Az(k)+Bu(k) 2(0) =z,

We want to find the optimal control sequence:

{U’O(O)a u0(1)7 T UO(N o 1)}

which minimizes the cost functional:

x(k)
ST(N)Q, 2(V) + z {[u(k)

u(k)

STR

Finite Horizon LQ optimal regulator

Consider the nth order discrete time LTI system:

x(k+1) = Ax(k)+ Bu(k) z(0) = wo

Notice that the value of the cost depends on the initial
condition 2(0) = o

J[2(0)] = 2T (N)Q, z(N) + z {[ﬁi% &2

|

To emphasize the dependence on z(0) = z,

w(k)

20

21

LQ Cost Functional:

N—-1 T
k S k
o1 =" e e+ T {[W] &][]
k=0
N total number of steps—“horizon”
z'(N)Q, z(N) penalizes the final state
deviation from the origin
[:c(k) T Q S lgc(k)] penalizes the transient state deviation
u(k)| [ST R| |u(k) from the origin and the control effort
S
Q, =0 Q. 210 R(-)o

st R /
\ Symmfétl’ic

22

LQ Cost Functional:

Simplified nomenclature:

J[z(0)] = wT(N)Qf z(N) Z { [igzg ST , [i%g] }

‘ =

. transient
final state
cost at each
cost
step

N-1
J[z(0)] = Lyl=(N)]+ > Llz(k),u(k)]
k=0

Additional notation
For m=0,1,..., N —1 define:

Optimal control sequence from instance M
Ul = (uo(m),uo(m +1),...,u°(N — 1))

Arbitrary control sequence from instance m:

Un = (u(m), u(m-+1), ..., u(N — 1))

23

24

Dynamic Programming

Optimal cost functional

JC[x(0)] = min

/"

(N—1

in 4 Lyla(N)] + - L[as(k),u(/«)]}

\ 0 k=0
%{—J

Function of initial state J[x(0)]

Ug = (u(O), w(1), ..., u(N — 1))

Control sequence from instance O

25

Optimal Incremental Cost Function

For m=0,1,..., N —1 define:

Optimal cost function from state x(m) at instant m

(N—1)
Jnle(m)l = min ¢ Le[z(N)]+) Llz(k),u(k)] ¢

U.
S \ k=m J

Un = (u(m), u(m—+1), ..., u(N — 1))

Control sequence from instance m

Optimal Cost Function

Optimal cost function at the final state x(V)

Jle(N)] = Lylx(N)]

... only a function of the final state X(IV)

26

Dynamic Programming

For m=0,1,...,N =2
Optimal value function: J9 [z(m)]

I [r(m)] = min

N-1

k=m

L\

Lylz(N)] +

N—-1)
> Llz(k), u(k)]
k=m

WV

\ \)

/

k=m-+1

N-1
> Llz(k),u(k)] = Llz(m),u(m)] + > Llz(k),u(k)]

28

Dynamic Programming

Optimal value function: (m =0,1,...,N — 2)
N-—1
Il (m)] = min {Lf[:v(N)] + Llz(m),u(m)] +) L[m(k),u(k)]}
m k=m-+1

N-1
= min min {Lf[x(N)]—I—L[az(m),u(m)] + > L[x(k),u(k)]}

u(m) Um—|—1 k=m-+1

u(m U1 1

%—/

an_|_1[$(m +1)] = J%_|_1[A$(m) + Bu(m)]

N-1
= min {L[:I;(m),u(m)] + min {Lf[:v(N)] + Z L[:U(k),u(k)]}}

29

Dynamic Programming
Optimal value function: (m =0,1,...,N — 2)

N-1
Jmlz(m)] = min {Lf[iff(N)] + > L[m(k),U(k)]}

U k=m

Jo[x(m)] = min {L[z(m),u(m)] 4+ J3,11[Az(m) + Bu(m)]}

u(m‘ '

N/

given x(m), these are only functions of w(m) !/

only an optimization with respect to a single vector

Bellman Equation

Jolz(m)] = min {L[z(m), w(m)] 4 J3, 11 [x(m + 1]}

u(m)

m=0,1,...,N — 1

1. The Bellman equation can be solved recursively
(backwards), starting from V.

J{le(N)] = L[z (N)]

2. Each iteration involves only an optimization with

respect to a single variable (u(m)) — multistage
optimization

Recursive Solution to the Bellman Equation

I [r(m)] = &17;3

{Llz(m), u(m)] + JG 41 [z(m + 1)]}

m=0,1,...,N — 1

JR[x(N)] = L¢[xz(N)] boundarycondition

I— known function of x(N)

not known

31

32

Recursive Solution to the Bellman Equation

Start with N-1: assume that x(N-1) Is given

find u’(N — 1) by solving:

known function of x(INV)

\

Tfoale(N =D = min {Llz(N —1),u(N = D] + Ly[=(N)]]

2(N) = Az(N—1)4+ Bu(N —1)

uP (N — 1) will be a function of x(N —1)

33

Recursive Solution to the Bellman Equation

Continue with N-2: assume that x(N-2) iIs given

find u’(N — 2) by solving:

known function of (N — 1)

\

Tale(N =2 = min {Lla(N = 2),u(N = 2)] + I} _1lz(N - 1]}

(N —-1) = Axz(N—-2)4+ Bu(N —2)

uO(N — 2) will be afunctionof x(N — 2)

Solving the Bellman Equation for a LQR

Jolz(m)] = min {L[z(m), w(m)] 4 J3, 11 [x(m + 1]}

u(m)

m=0,1,...,N — 1

) J{le(N)] = Lyfz(N)] = 2" (V) Q, z(N)

)
u(k)

T

Q S
st R

x(k)
u(k)

Quadratic functions

) Llz(k), u(k)] =

35

Minimization of quadratic functions

For Mo, = O we have that:

T
e MIN * Myy Mio| | ::UT(Mll—M12M_1MT):L‘
u o |u M{Q Moo | |u 22 712
- Optimal u givenby w® = —M55 Misx
Proof:
T

X
u

e MlQ] [x] — :leMllil? + :ETM12U + ’UJTMiFQQU + “TMQ?U

M,‘lr2 MQQ U \ J

Completing the sqlV7

(u + Mg_glezw)TMzz(u + M2_21M1T2$) — 'CUTM12M2_21M{2$

Minimization of quadratic functions

For Ms>> = 0 we have that:

T
. min [F| (M1 M| e = 27 (M11 — M12May Mi5)x
u |u Milr2 Moo | |u 11 12Moy Mo
- Optimal u givenby w® = —M55 Misx
Proof:
T
x| |Mi1 Mio| |x| _ T B — 17,7
+ (u + M5y Mise)T Moo (u + Mos Mise)
> oT(M11 — M1oMy Mip)z, Vu
T
x My Mig| x| _ T B —1,,T
u° M]TQ M22] [UO] — & (Mll M12M22 M12).CU

36

37

Finite-horizon LQR solution

JR[x(k)] = z(k)" P(k)x(k)
wO(k) = —K(k 4+ 1)z (k)
K((k) = [B'P(k)B+ R~ [B'P(K)A+ ST]

Where P(k)is computed backwards in time using the
discrete Riccati difference equation :

P(N):Qf

P(k—1)=AT"P(k)A+Q
—[ATP(K)B 4+ S][BTP(k)B + R~ Y[B'P(k)A + ST

38

Proof of finite-horizon LQR solution

Proof (by induction on decreasing %)

Let Jpy1[z(k+ D] =2+ 1)"P(k+ Da(k+ 1)

(Trivially holds for k=N -1 by definition of J%;/[z(N)])

Ty le(k + 1)] = [Az(k) + Bu(k)]" P(k + 1)[Az(k) + Bu(k)]

H_J

=

o+ 1)=[1 8] [70)

39

Proof of finite-horizon LQR solution

T le(k + 1)] = [Az(k) + Bu(k)]" P(k + 1)[Az(k) + Bu(k)]

(k)

A B [i(k}]
_ [=O1 [AT) g1y [a) [2O0)
(k) BT u(k)

T

_ [x(k)
u(k)

A'P(k+ 1A AT'P(k+ 1)B| |z(k)
BI'P(k+1)A BTP(k+1)B| |u(k)

40

Proof of finite-horizon LQR solution

The Bellman equation gives

JRle(k)] = min { L{z(k), u(k)] + Jo1 1 [z(k + D]}

u(k)
4
@1 (o ST xk) N 2()]" [ATP(k+1)A ATP(k 4+ 1)B] [z(k)
—um | |u®)| ST R| |u(k) u(k)| |BTP(k+1)A BTP(k+ 1)B| |u(k)

T

A'P(k+1)A+Q ATPk+1)B+ S| |z(k)
BI'P(k+ 1A+ ST BI'P(k+1)B+4 R| |u(k)

41

Proof of finite-horizon LQR solution

T

0 o :E(k)
Jiplz(k)] = % { [u(k)

ATP(k+1DA+Q AP+ 1)B+ S| |=(k)
BIpP(k+1)A+ ST BTP(k+1)B+ R

Using results for quadratic optimizations:

Rlx(k)] = x(k)T P(k)x(k)

u’(k) = —K(k
where

1z (k)

Pk =ATPk+1DA+0Q - [ATP(k+ 1)B+ S]
x [B'P(k+1)B+ R ' [B'P(k+ 1)A+ sT]

Kk+1) =[B'P(k+1)B+ R Y B'P(k+1)A+ ST]

Example — Double Integrator
Double integrator with ZOH and sampling time T' =1.

u(t)

u(k)

— ZOH
- z1(k+ 1)
zo(k+ 1)
- 21(k+ 1)
- zo(k

x1(k) +— x(kT)
x> (k) «—— v(kT)

o) | 1 [w0 ST W)
N u(k)
position
velocity
1 T [21(k) T2
0 1} [wz(k)}_l_ 7 | k)
1 1| | z1(k) 0.5
I ECIR RS

42

43

Example — Double Integrator

xi(k+1) | |1 1 x1 (k) 0.5
[wzw—-w} = [o 1} [WH }’“““)

LOQR cost:
ea = st a0+ 5 {18 5

ST
Choose: Q = (1) 8 7 (k) + Ru?(k)
R>0

only penalize
S=20 position x;
P(N)= Q; =0 and control

44

Example — Double Integrator (Dl)
Compute P(k) for an arbirary P(N) = @, and N.

Computing backwards: P(N) = Q

P(k—1)=ATP(K)A+Q

—ATp)B [BTP(k)B + R] ' BTP(k)A

R>0

a=151] =% e=|

o O

O

Example — DI Finite Horizon Case 1

1 O

- N=10, R=10, P(10) = 0 0

P(1,1), P(1,2),P(2,2)

45

Example — DI Finite Horizon Case 2

Dare
+ N=30, R =10, P(30)=| 4 §
ﬁ\ P2a(K) \
& [3 316"
g PO)=1316 81
5 _
T

46

Example — DI Finite Horizon Case 3

- N=30, R=10,

P(1,1), P(1,2),P(2,2)

9;

ol

N

P(30) =

0
0

0
1

<

3

\ Po(K)\

3.16 |

0 3.16 8.1 |
P15(K)

10

20

25 30

47

48

Example — DI Finite Horizon

Observation:
In all cases, regardless of the choice of P(N) = Q,

when the horizon, N, is sufficiently large

the backwards computation of the Riccati Eq.
always converges to the same solution:

3 3.16
P(0) = 316 8.1

We will return to this important idea in a few lectures

Properties of Matrix P(k)

P(k) satisfies:
1) P(k) = P! (k)

) P(k) = 0

(symmetric)

(positive semi-definite)

49

50

Properties of Matrix P(k)

P(k) = PT(k) (symmetric)
Proof: (by induction on decreasing k)

Base case, k=N
P(N)' =Q; =Q;=P(N)

For kE{O,l,,N—l} :

Pk =ATPk+1DA+0Q - [ATP(k+ 1)B+ S]
x [B'P(k+1)B+ R ' [B'P(k+ 1)A+ sT]

Transpose both sides of the equation B

Properties of Matrix P(k)
P (k) ~ 0 (positive semi-definite)
Proof: (by induction on decreasing k)

Base case, k=/N:
P(N) = Qf ~ 0

For]‘CE{O,].,,N—]_} :

Pk)=ATP(k+1)A+Q — [ATP(k+ 1)B+ 9]
x [BI'P(k+ 1)B+ R '[BTP(k+ 1)A+ S']

@ Algebra...

= [A— BK(k+ 1)]"P(k+ 1)[A - BK(k + 1)]
I To s I

T [—K(k—l— | |sT R [—K(k—|— 1)] =0

o1

Summary

« Bellman’s dynamic programming invention
was a major breakthrough in the theory of
multistage decision processes and
optimization

« Key ideas

— Principle of optimality
— Computation of optimal cost function

* lllustrated with a simple multi-stage example

52

53

Summary

« Bellman’s equation:

Jolx(m)] = min {L[z(m),u(m)] + J9, 41 [z(m + 1)]}

u(m)

— has to be solved backwards in time
— may be difficult to solve
— the solution yields a feedback law

Jolz(m)] = min {Lf[w(N)] + Z L{x(k), u(k)]}

Summary

Linear Quadratic Reqgulator (LOQR)
« Bellman’s equation is easily solved
« Optimal cost is a quadratic function

Pla()) = o (k) P(K) (k)

« matrix P iIs solved using a Riccati equation

« Optimal control is a linear time varying
feedback law

wo(k) = —K(k 4+ 1) z(k)

54

