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ME233 Advanced Control II

Lecture 1

Dynamic Programming &

Optimal Linear Quadratic Regulators (LQR)

(ME233 Class Notes DP1-DP4)
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Outline

1. Dynamic Programming

2. Simple multi-stage example

3. Solution of finite-horizon optimal 

Linear Quadratic Reguator (LQR)
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Dynamic Programming

Invented by Richard Bellman in 1953

• From IEEE History Center: Richard Bellman:

– “His invention of dynamic programming in 
1953 was a major breakthrough in the theory 
of multistage decision processes…”

– “A breakthrough which set the stage for the 
application of functional equation techniques 
in a wide spectrum of fields…”

– “…extending far beyond the problem-areas 
which provided the initial motivation for his 
ideas.”
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Dynamic Programming

Invented by Richard Bellman in 1953

• From IEEE History Center: Richard Bellman:

– In 1946 he entered Princeton as a graduate 

student at age 26. 

– He completed his Ph.D. degree in a record 

time of three months. 

– His Ph.D. thesis entitled “Stability Theory of 

Differential Equations" (1946) was 

subsequently published as a book in 1953, 

and is regarded as a classic in its field.
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Dynamic Programming

We will use dynamic programming to derive the 
solution of:

• Discrete time LQR and related problems

• Discrete time Linear Quadratic Gaussian 
(LQG) controller.

– Optimal estimation and regulation
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B

Dynamic Programming Example

Illustrative Example:

Find “optimal” path:

From A to  B

by moving only to the right.
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Dynamic Programming Example

Illustrative Example:

Find “optimal” path:

From A to  B

by moving only to the right.
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• Number next to line is the 
“cost” in going along that 
particular path.
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B
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Dynamic Programming Example

Illustrative Example:

Find “optimal” path:

From A to  B

by moving only to the right.
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A B
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Dynamic Programming Example

Illustrative Example:

Find “optimal” path:

From A to  B

by moving only to the right.

23
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Dynamic Programming Example

Illustrative Example:

Find optimal path:

From A to  B

by moving only to the right.
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• Optimal path from A  to  B  

is the one with the 

smallest overall cost.

• There are 70 possible 

routes starting from A.
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Dynamic Programming

Key idea:

• Convert a single “large” optimization problem 
into a series of “small” multistage optimization 
problems.

– Principle of optimality: “From any point on 
an optimal trajectory, the remaining trajectory 
is optimal for the corresponding problem 
initiated at that point.”

– Optimal Value Function: Compute the 
optimal value of the cost from each state to 
the final state.
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Dynamic Programming Example
Illustrative Example:

• Use principle of optimality 

• Compute Optimal Value Function and 

optimal control at each state

• Start from the final state B A B
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assume that

we are here…

determine the

optimal path

from       to B
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Dynamic Programming Example
Illustrative Example:

• Use principle of optimality 

• Compute Optimal Value Function and 

optimal control at each state

• Start from the final state B A B
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two options:

7 + 9 = 16

11 + 12 = 23
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Dynamic Programming Example
Illustrative Example:

• Use principle of optimality 

• Compute Optimal Value Function and 

optimal control at each state

• Start from the final state B A B
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Assign:

• optimal path
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16
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Dynamic Programming Example
Illustrative Example:

• Use principle of optimality 

• Compute Optimal Value Function and 

optimal control at each state

• Start from the final state B A B
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Dynamic Programming Example
Illustrative Example:

• Use principle of optimality 

• Compute Optimal Value Function and 

optimal control at each state

• Start from the final state B
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Dynamic Programming Example

Optimal cost:

Continue until 

A is reached



18

LTI Optimal regulators

• State space description of a discrete time LTI

• Find “optimal” control

• That drives the state to the origin

For now, everything is deterministic

In some sense, to be defined later…
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Finite Horizon LQ optimal regulator

Consider the nth order  discrete time LTI system:

We want to find the optimal control sequence:

which minimizes the cost functional:
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Finite Horizon LQ optimal regulator

Consider the nth order  discrete time LTI system:

Notice that the value of the cost depends on the initial 

condition

To emphasize the dependence on
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LQ Cost Functional:

• total number of steps—“horizon”

• penalizes the final state   

deviation from the origin

• penalizes the transient state deviation 

from the origin and the control effort       

symmetric
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LQ Cost Functional:

Simplified nomenclature:

final state

cost

transient

cost at each

step



For                                           define:
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Additional notation

Optimal control sequence from instance  m

Arbitrary control sequence from instance  m:
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Dynamic Programming

Optimal cost functional

Control sequence from instance 0

Function of initial state
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Optimal Incremental Cost Function

Optimal cost function  from state  x(m) at instant   m

Control sequence from instance  m

For                                           define:
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Optimal Cost Function

Optimal cost function  at the final state  x(N)

… only a function of the final state x(N)
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Dynamic Programming

Optimal value function:

For                                          :
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Dynamic Programming

Optimal value function:
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Dynamic Programming

Optimal value function:

given x(m), these are only functions of u(m) !!

only an optimization with respect to a single vector
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Bellman Equation

1. The Bellman equation can be solved recursively 

(backwards), starting from N:

2. Each iteration involves only an optimization with 

respect to a single variable (u(m)) – multistage 

optimization
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Recursive Solution to the Bellman Equation

known function of  x(N)

not known

boundary condition
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Recursive Solution to the Bellman Equation

Start with  N-1:

find                      by solving:

assume that x(N-1)   is given

will be a function of  

known function of 
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Recursive Solution to the Bellman Equation

Continue with  N-2:

find by solving:

assume that x(N-2) is given

will be a function of  

known function of 
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Solving the Bellman Equation for a LQR

1)

2)

Quadratic functions



For                    we have that:

•

• Optimal u given by
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Minimization of quadratic functions

Proof:

Completing the square



For                    we have that:

•

• Optimal u given by
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Minimization of quadratic functions

Proof:
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Finite-horizon LQR solution

Where P(k) is computed backwards in time using the 

discrete Riccati difference equation :



Proof of finite-horizon LQR solution

Proof (by induction on decreasing k)

Let

(Trivially holds for k=N -1 by definition of                     )

38



Proof of finite-horizon LQR solution
39



Proof of finite-horizon LQR solution
40

The Bellman equation gives



Proof of finite-horizon LQR solution
41

Using results for quadratic optimizations:

where



42

Example – Double Integrator

ZOH
u(t)u(k) x(k)Tx(t)

v(k)T

1

s

1

s

v(t)

Double integrator with ZOH and sampling time T =1:

position

velocity



Choose:
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Example – Double Integrator

LQR cost:

only penalize

position x1
and control u
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Example – Double Integrator (DI)

Compute P(k) for an arbitrary                              and  N.

Computing backwards:
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Example – DI Finite Horizon 

Observation:

In all cases, regardless of the choice of 

when the horizon, N, is sufficiently large  

the backwards computation of the Riccati Eq.

always converges to the same solution:

We will return to this important idea in a few lectures



Properties of Matrix P(k)

P(k) satisfies:

1)

2)
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(symmetric)

(positive semi-definite)



Properties of Matrix P(k)
50

(symmetric)

Proof: (by induction on decreasing k)

Base case, k=N :

For                                                :

Transpose both sides of the equation



Properties of Matrix P(k)
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(positive semi-definite)

Proof: (by induction on decreasing k)

Base case, k=N :

For                                                :

Algebra…
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Summary

• Bellman’s dynamic programming invention 
was a major breakthrough in the theory of 
multistage decision processes and 
optimization

• Key ideas 

– Principle of optimality 

– Computation of optimal cost function

• Illustrated with a simple multi-stage example
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Summary

• Bellman’s equation:

– has to be solved backwards in time

– may be difficult to solve

– the solution yields a feedback law
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Summary

Linear Quadratic Regulator (LQR)

• Bellman’s equation is easily solved

• Optimal cost is a quadratic function

• matrix P is solved using a Riccati equation

• Optimal control is a linear time varying 

feedback law


