Least Squares Estimation

Model

\[y(k) = \sum_{i=1}^{n} \phi_i(k - 1) \theta_i \]

Where

- \(y(k) \) observed output
- \(\phi_i(k) \) known and measurable function
- \(\theta_i \) unknown but constant parameter
Least Squares Estimation

Model

\[y(k) = \phi^T(k - 1) \theta \]

Where

\[y(k) \] measured output

\[\phi(k) = \begin{bmatrix} \phi_1(k) \\ \vdots \\ \phi_n(k) \end{bmatrix} \]

\[\theta = \begin{bmatrix} \theta_1 \\ \vdots \\ \theta_n \end{bmatrix} \]

\(n \times 1 \) regressor

unknown vector
Batch Least Squares Estimation

Assume that we have collected k data sets:

$y(1), \ldots, y(k)$

$\phi(0), \ldots, \phi(k - 1)$

We want to find the parameter estimate at instant k: $\hat{\theta}(k)$

that best fits all collected data in the least squares sense:

$$\min_{\hat{\theta}(k)} \left\{ \frac{1}{2} \sum_{j=1}^{k} \left[y(j) - \phi^T(j - 1) \hat{\theta}(k) \right]^2 \right\}$$

kept constant in the summation
Batch Least Squares Estimation

Defining the cost functional

\[V(\hat{\theta}(k)) = \frac{1}{2} \sum_{j=1}^{k} \left[y(j) - \phi^T(j - 1) \hat{\theta}(k) \right]^2 \]

\(\hat{\theta}(k) \) is obtained by solving

\[\frac{dV(\hat{\theta}(k))}{d\hat{\theta}(k)} = 0 \]
Batch Least Squares Solution

The least squares parameter estimate \(\hat{\theta}(k) \) which solves

\[
\frac{dV(\hat{\theta}(k))}{d\hat{\theta}(k)} = 0
\]

Satisfies the **normal equation**:

\[
\left[\sum_{i=1}^{k} \phi(i-1)\phi^T(i-1) \right] \hat{\theta}(k) = \sum_{i=1}^{k} \phi(i-1)y(i)
\]

\[\text{\(n \times n\) matrix} \quad \text{\(n \times 1\) vector}\]
Normal Equation Derivation

\[V(\hat{\theta}(k)) = \frac{1}{2} \sum_{j=1}^{k} \left[y(j) - \phi^T(j - 1) \hat{\theta}(k) \right]^2 \]

\[= \frac{1}{2} \left\| \begin{bmatrix}
y(1) - \phi^T(0) \hat{\theta}(k) \\
\vdots \\
y(k) - \phi^T(k - 1) \hat{\theta}(k)
\end{bmatrix} \right\|^2
\]

\[= \frac{1}{2} \left\| \begin{bmatrix}
y(1) \\
\vdots \\
y(k)
\end{bmatrix} - \begin{bmatrix}
\phi^T(0) \\
\vdots \\
\phi^T(k - 1)
\end{bmatrix} \hat{\theta}(k) \right\|^2
\]

\[= \frac{1}{2} \left\| Y(k) - \Phi^T(k - 1) \hat{\theta}(k) \right\|^2
\]
Normal Equation Derivation

\[V(\hat{\theta}(k)) = \frac{1}{2} \left\| Y(k) - \Phi^T(k - 1)\hat{\theta}(k) \right\|^2 \]

\[= \frac{1}{2} \left[Y^T(k)Y(k) + \hat{\theta}^T(k)\Phi(k - 1)\Phi^T(k - 1)\hat{\theta}(k) - 2\hat{\theta}^T(k)\Phi(k - 1)Y(k) \right] \]

Taking the partial derivative with respect to \(\hat{\theta}(k) \)

\[\frac{\partial V(\hat{\theta}(k))}{\hat{\theta}(k)} = \Phi(k-1)\Phi^T(k-1)\hat{\theta}(k) - \Phi(k-1)Y(k) \]

For optimality, we therefore need

\[\Phi(k - 1)\Phi^T(k - 1)\hat{\theta}(k) = \Phi(k - 1)Y(k) \]
Normal Equation Derivation

\[\Phi(k - 1) = \begin{bmatrix} \phi(0) & \cdots & \phi(k - 1) \end{bmatrix} \]

\[Y(k) = \begin{bmatrix} y(1) & \cdots & y(k) \end{bmatrix}^T \]

For optimality, we need

\[\Phi(k - 1) \Phi^T(k - 1) \hat{\theta}(k) = \Phi(k - 1) Y(k) \]

\[\sum_{i=1}^{k} \phi(i - 1) \phi^T(i - 1) \]

\[\sum_{i=1}^{k} \phi(i - 1) y(i) \]

Therefore, we need

\[\hat{\theta}(k) = \sum_{i=1}^{k} \phi(i - 1) y(i) \]
Batch Least Squares Estimation

The solution of the normal equation

\[\sum_{i=1}^{k} \phi(i - 1) \phi^T(i - 1) \] \(\hat{\theta}(k) = \sum_{i=1}^{k} \phi(i - 1) y(i) \)

Is given by:

\[\hat{\theta}(k) = \left[\sum_{i=1}^{k} \phi(i - 1) \phi^T(i - 1) \right] \# \sum_{i=1}^{k} \phi(i - 1) y(i) \]

Pseudoinverse
Moore-Penrose pseudoinverse

• Let A have the singular value decomposition

$$A = \begin{bmatrix} U_1 & U_2 \end{bmatrix} \begin{bmatrix} \Sigma & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} V_1^T \\ V_2^T \end{bmatrix}$$

$\Sigma = \text{diag}(\sigma_1, \ldots, \sigma_r)$ \hspace{1cm} $\sigma_1 \geq \cdots \geq \sigma_r > 0$

• Then the Moore-Penrose pseudoinverse of A is

$$A^\# = \begin{bmatrix} V_1 & V_2 \end{bmatrix} \begin{bmatrix} \Sigma^{-1} & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} U_1^T \\ U_2^T \end{bmatrix}$$

In MATLAB: \texttt{pinv}(A)
Moore-Penrose pseudoinverse

Let \(A \in \mathcal{R}^{n \times m} \) and \(A^\# \) be its Moore-Penrose pseudoinverse.

Then, \(A^\# \) has the dimension of \(A^T \) and satisfies:

- \(A A^\# A = A \)
- \(A^\# A A^\# = A^\# \)
- \(A^\# A \) and \(A A^\# \) are Hermitian

In this case, since \(A = \Phi \Phi^T \)

\[
\Phi = \begin{bmatrix} \phi(0) & \cdots & \phi(k-1) \end{bmatrix}
\]

\[
A A^\# \Phi = \Phi
\]
Batch Least Squares Estimation

Assume that we have collected sufficient data and the data has sufficient richness so that

$$\sum_{i=1}^{k} \phi(i-1)\phi^T(i-1) = \phi(0)\phi^T(0) + \phi(1)\phi^T(1) + \cdots + \phi(k-1)\phi^T(k-1)$$

has full rank.

Then,

$$\hat{\theta}(k) = \left[\sum_{i=1}^{k} \phi(i-1)\phi^T(i-1) \right]^{-1} \sum_{i=1}^{k} \phi(i-1) y(i)$$

$$F(k)$$
Recursive Least Squares (RLS)

Assume that we have collected \(k-1 \) sets of data and have computed \(\hat{\theta}(k-1) \) using

\[
\hat{\theta}(k-1) = \left[\sum_{i=1}^{k-1} \phi(i-1)\phi^T(i-1) \right]^{-1} \sum_{i=1}^{k-1} \phi(i-1)y(i)
\]

\[
F(k-1)
\]

Then, given a new set of data: \(y(k) \) \(\phi(k-1) \)

We want to find \(\hat{\theta}(k) \) in a recursive fashion:

\[
\hat{\theta}(k) = \hat{\theta}(k-1) + [\text{correction term}]
\]
Recursive Least Squares Algorithm

Define the \textit{a-priori} output estimate:

\[
\hat{y}^o(k) = \phi^T(k - 1)\hat{\theta}(k - 1)
\]

and the \textit{a-priori} output estimation error:

\[
e^o(k) = y(k) - \phi^T(k - 1)\hat{\theta}(k - 1)
\]

The RLS algorithm is given by:

\[
\hat{\theta}(k) = \hat{\theta}(k - 1) + F(k)\phi(k - 1)e^o(k)
\]

where \(F(k)\) has the recursive relationship on the next slide
Recursive Least Squares Gain

The RLS gain $F(k)$ is defined by

$$F^{-1}(k) = \sum_{i=1}^{k} \phi(i-1)\phi^T(i-1)$$

Therefore,

$$F^{-1}(k) = F^{-1}(k-1) + \phi(k-1)\phi^T(k-1)$$

Using the matrix inversion lemma, we obtain

$$F(k) = F(k-1) - \frac{F(k-1) \phi(k-1) \phi(k-1)^T F(k-1)}{1 + \phi(k-1)^T F(k-1) \phi(k-1)}$$
Recursive Least Squares Derivation

Define the least squares gain matrix \(F(k) \)

\[
F(k) = \left[\sum_{i=1}^{k} \phi(i-1)\phi^T(i-1) \right]^{-1}
\]

Therefore,

\[
\hat{\theta}(k) = F(k) \sum_{i=1}^{k} \phi(i-1)y(i)
\]
Recursive Least Squares Derivation

Notice that

\[\hat{\theta}(k) = F(k) \sum_{i=1}^{k} \phi(i - 1)y(i) \]

\[= F(k) \left[\phi(k - 1)y(k) + \sum_{i=1}^{k-1} \phi(i - 1)y(i) \right] \]

\[F^{-1}(k - 1)\hat{\theta}(k - 1) \]

\[F^{-1}(k - 1) = F^{-1}(k) - \phi(k - 1)\phi^T(k - 1) \]
Recursive Least Squares Derivation

Therefore plugging the previous two results,

\[
\hat{\theta}(k) = F(k) \left[\left(F(k)^{-1} - \phi(k - 1) \phi^T(k - 1) \right) \hat{\theta}(k - 1) \right.
\]

\[
+ \left. \phi(k - 1) y(k) \right]
\]

And rearranging terms, we obtain

\[
\hat{\theta}(k) = \hat{\theta}(k - 1)
\]

\[
+ F(k) \phi(k - 1) \left[y(k) - \phi^T(k - 1) \hat{\theta}(k - 1) \right]
\]

\[
\underbrace{\varepsilon_o(k)}_{e_o(k)}
\]
Recursive Least Squares Estimation

Define the \textit{a-priori} output estimate:

\[
\hat{y}^o(k) = \phi^T(k - 1)\hat{\theta}(k - 1)
\]

and the \textit{a-priori} output estimation error:

\[
e^o(k) = y(k) - \phi^T(k - 1)\hat{\theta}(k - 1)
\]

The RLS algorithm is given by:

\[
\hat{\theta}(k) = \hat{\theta}(k - 1) + F(k)\phi(k - 1) e^o(k)
\]
Recursive Least Squares Estimation

Recursive computation of $F(k)$

$$F^{-1}(k) = \sum_{i=1}^{k} \phi(i-1)\phi^T(i-1)$$

Therefore,

$$F^{-1}(k) = F^{-1}(k-1) + \phi(k-1)\phi^T(k-1)$$

Using the matrix inversion lemma, we obtain

$$F(k) = F(k-1) - \frac{F(k-1) \phi(k-1) \phi(k-1)^T F(k-1)}{1 + \phi(k-1)^T F(k-1) \phi(k-1)}$$
Recursive Least Squares Estimation

Matrix inversion lemma:

\[
F^{-1}(k) = F^{-1}(k - 1) + \phi(k - 1)\phi^T(k - 1)
\]

- Multiply by \(F(k - 1)\) on the right and \(F(k)\) on the left:

\[
F(k - 1) = F(k) + F(k)\phi(k - 1)\phi(k - 1)^T F(k - 1)
\]

- Multiply by \(\phi(k - 1)\) on the right:

\[
F(k - 1)\phi(k - 1) = F(k)\phi(k - 1) + F(k)\phi(k - 1)\phi(k - 1)^T F(k - 1)\phi(k - 1)
\]

[scalar]
Recursive Least Squares Estimation

Matrix inversion lemma:

• Rearranging terms,

\[F(k - 1)\phi(k - 1) = \left[1 + \phi(k - 1)^T F(k - 1)\phi(k - 1) \right] F(k)\phi(k - 1) \]

• Solving for \(F(k)\phi(k - 1) \)

\[F(k)\phi(k - 1) = \frac{F(k - 1)\phi(k - 1)}{\left[1 + \phi(k - 1)^T F(k - 1)\phi(k - 1) \right]} \]
Recursive Least Squares Estimation

Matrix inversion lemma:

- Plug

\[F(k) \phi(k - 1) = \frac{F(k - 1) \phi(k - 1)}{1 + \phi(k - 1)^T F(k - 1) \phi(k - 1)} \]

into

\[F(k) = F(k - 1) - \frac{F(k - 1) \phi(k - 1) \phi(k - 1)^T F(k - 1)}{1 + \phi(k - 1)^T F(k - 1) \phi(k - 1)} \]

to obtain
RLS Estimation Algorithm

A-priori version:

\[
e^{o}(k + 1) = y(k + 1) - \phi^T(k)\hat{\theta}(k)
\]

\[
\hat{\theta}(k + 1) = \hat{\theta}(k) + F(k + 1)\phi(k)e^{o}(k + 1)
\]

\[
F(k + 1) = F(k) - \frac{F(k)\phi(k)\phi^T(k)F(k)}{1 + \phi^T(k)F(k)\phi(k)}
\]

Initial conditions:

\[
F(0) = F^T(0) > 0 \quad \hat{\theta}(0)
\]
RLS Estimation Algorithm

A-posteriori version (used to prove that $e(k) \to 0$):

$$e^o(k + 1) = y(k + 1) - \phi^T(k)\hat{\theta}(k)$$

$$e(k + 1) = \frac{e^o(k + 1)}{1 + \phi^T(k)F(k)\phi(k)}$$

$$\hat{\theta}(k + 1) = \hat{\theta}(k) + F(k)\phi(k)e(k + 1)$$

$$F(k + 1) = F(k) - \frac{F(k)\phi(k)\phi^T(k)F(k)}{1 + \phi^T(k)F(k)\phi(k)}$$
Define the parameter estimation error:

\[\tilde{\theta}(k) = \theta - \hat{\theta}(k) \]

Notice that, since

\[y(k) = \phi^T(k - 1)\theta \]

And the a-priori error is

\[e^o(k) = y(k) - \phi^T(k - 1)\hat{\theta}(k - 1) \]

We obtain,

\[
e^o(k) = \phi^T(k - 1)\theta - \phi^T(k - 1)\hat{\theta}(k - 1)
\]

\[
= \phi^T(k - 1) \left[\theta - \hat{\theta}(k - 1) \right]
\]

\[
= \phi^T(k - 1) \tilde{\theta}(k-1)
\]
RLS Estimation Algorithm

Thus, the a-priori output estimation error can be written as

\[e^o(k) = \phi^T(k - 1)\tilde{\theta}(k - 1) \]

Similarly, define the \textbf{a-posteriori output and estimation error}:

\[\hat{y}(k) = \phi^T(k - 1)\hat{\theta}(k) \]

\[e(k) = y(k) - \hat{y}(k) \]

then,

\[e(k) = \phi^T(k - 1)\tilde{\theta}(k) \]
RLS Estimation Algorithm

Derivation of the RLS A-posteriori version:

\[\hat{\theta}(k) = \hat{\theta}(k - 1) + F(k)\phi(k - 1) e^o(k) \]

\[e^o(k) = y(k) - \phi^T(k - 1)\hat{\theta}(k - 1) \]

Remember that,

\[F(k)\phi(k - 1) = \frac{F(k - 1)\phi(k - 1)}{1 + \phi(k - 1)^T F(k - 1)\phi(k - 1)} \]

Thus,

\[\hat{\theta}(k + 1) = \hat{\theta}(k) + \frac{F(k)\phi(k)}{1 + \phi^T(k)F(k)\phi(k)} e^o(k + 1) \]
RLS Estimation Algorithm

Multiplying by \(\phi^T(k) \) to the left of

\[
\tilde{\theta}(k + 1) = \tilde{\theta}(k) - \frac{F(k)\phi(k)}{1 + \phi^T(k)F(k)\phi(k)} e^o(k + 1)
\]

to obtain,

\[
\frac{\phi^T(k)\tilde{\theta}(k + 1)}{e(k+1)} = \frac{\phi^T(k)\tilde{\theta}(k)}{e^o(k+1)} - \frac{\phi^T(k)F(k)\phi(k)}{1 + \phi^T(k)F(k)\phi(k)} e^o(k + 1)
\]

Thus,

\[
e(k + 1) = e^o(k + 1) - \frac{\phi^T(k)F(k)\phi(k)}{1 + \phi^T(k)F(k)\phi(k)} e^o(k + 1)
\]
\[
= \frac{e^o(k + 1)}{1 + \phi^T(k)F(k)\phi(k)}
\]
Therefore, from

\[\hat{\theta}(k + 1) = \hat{\theta}(k) + F(k)\phi(k) \frac{e^o(k + 1)}{1 + \phi^T(k)F(k)\phi(k)} \]

We obtain,

\[\hat{\theta}(k + 1) = \hat{\theta}(k) + F(k)\phi(k) e(k + 1) \]

\[e(k + 1) = \frac{e^o(k + 1)}{1 + \phi^T(k)F(k)\phi(k)} \]
RLS with forgetting factor

The inverse of the gain matrix in the RLS algorithm is given by:

\[F^{-1}(k) = F^{-1}(k - 1) + \phi(k - 1)\phi^T(k - 1) \]

Its trace is given by:

\[\text{tr} \left[F^{-1}(k) \right] = \text{tr} \left[F^{-1}(k - 1) \right] + \|\phi(k - 1)\|^2 \]

which always increases when \(\|\phi(k - 1)\| \neq 0 \)
RLS with forgetting factor

Similarly, the trace of the gain matrix is given by

\[
\text{tr} [F(k)] = \text{tr} [F(k - 1)] - \frac{\|F(k - 1)\phi(k - 1)\|^2}{1 + \phi^T(k - 1)F(k - 1)\phi(k - 1)}
\]

always decreases when \(\|F(k - 1)\phi(k - 1)\| \neq 0 \)

Problem: RLS eventually stops updating
RLS with forgetting factor

We can modify cost function to “forget” old data

\[V(\hat{\theta}(k)) = \frac{1}{2} \sum_{j=1}^{k} \lambda^{(k-j)} \left[y(j) - \phi^T(j - 1) \hat{\theta}(k) \right]^2 \]

\[0 < \lambda \leq 1 \]

Key idea: Discount old data, e.g. the term

\[\lambda^{(k-1)} \left[y(1) - \phi^T(0) \hat{\theta}(k) \right]^2 \]

is small when \(k \) is large since \(\lim_{m \to \infty} \lambda^m = 0 \)
RLS with forgetting factor

A-priori version:

\[e^o(k + 1) = y(k + 1) - \phi^T(k)\hat{\theta}(k) \]

\[\hat{\theta}(k + 1) = \hat{\theta}(k) + F(k + 1)\phi(k)e^o(k + 1) \]

\[F(k + 1) = \frac{1}{\lambda} \left[F(k) - \frac{F(k)\phi(k)\phi(k)^T F(k)}{\lambda + \phi(k)^T F(k)\phi(k)} \right] \]

\[F^{-1}(k + 1) = \lambda F^{-1}(k) + \phi(k)\phi^T(k) \]
RLS with forgetting factor

A-posteriori version (used to prove that $e(k) \longrightarrow 0$):

$$e^o(k + 1) = y(k + 1) - \phi^T(k)\hat{\theta}(k)$$

$$e(k + 1) = \frac{\lambda e^o(k + 1)}{\lambda + \phi^T(k)F(k)\phi(k)}$$

$$\hat{\theta}(k + 1) = \hat{\theta}(k) + \frac{1}{\lambda}F(k)\phi(k)e(k + 1)$$

$$F(k + 1) = \frac{1}{\lambda} \left[F(k) - \frac{F(k)\phi(k)\phi(k)^T F(k)}{\lambda + \phi(k)^T F(k)\phi(k)} \right]$$
The gain of the RLS with FF may blow up

\[
\text{tr } [F(k)] = \frac{1}{\lambda} \text{tr } [F(k-1)] - \frac{\|F(k-1)\phi(k-1)\|^2}{\lambda^2 + \lambda \phi^T(k-1)F(k-1)\phi(k-1)}
\]

if \(\phi(k) \) is not persistently exciting

(more on this later)
General PAA gain formula

\[F^{-1}(k + 1) = \lambda_1(k) F^{-1}(k) + \lambda_2(k) \phi(k)\phi^T(k) \]

\[
0 < \lambda_1(k) \leq 1 \quad 0 \leq \lambda_2(k) < 2
\]

- **Constant adaptation gain:** \(\lambda_1(k) = 1, \lambda_2(k) = 0 \)

 (We talked about this case in the previous lecture)

- **RLS:** \(\lambda_1(k) = 1, \lambda_2(k) = 1 \)

- **RLS with forgetting factor:** \(\lambda_1(k) < 1, \lambda_2(k) = 1 \)
General PAA gain formula

\[F^{-1}(k + 1) = \lambda_1(k) F^{-1}(k) + \lambda_2(k) \phi(k)\phi^T(k) \]

\[0 < \lambda_1(k) \leq 1 \quad 0 \leq \lambda_2(k) < 2 \]

\[F(k+1) = \frac{1}{\lambda_1(k)} \left[F(k) - \lambda_2(k) \frac{F(k)\phi(k)\phi^T(k)F(k)}{\lambda_1(k) + \lambda_2(k)\phi^T(k)F(k)\phi(k)} \right] \]

\[F(0) = F^T(0) > 0 \]
General PAA

A-priori version:

\[e^o(k + 1) = y(k + 1) - \phi^T(k)\hat{\theta}(k) \]

\[\hat{\theta}(k+1) = \hat{\theta}(k) + \frac{1}{\lambda_1(k) + \phi^T(k)F(k)\phi(k)}F(k)\phi(k)e^o(k+1) \]

\[F(k+1) = \frac{1}{\lambda_1(k)} \left[F(k) - \lambda_2(k) \frac{F(k)\phi(k)\phi^T(k)F(k)}{\lambda_1(k) + \lambda_2(k)\phi^T(k)F(k)\phi(k)} \right] \]

When \(\lambda_2(k) = 1 \), the parameter estimate equation simplifies to

\[\hat{\theta}(k + 1) = \hat{\theta}(k) + F(k + 1)\phi(k)e^o(k + 1) \]
General PAA

A-posteriori version (used to prove that \(e(k) \rightarrow 0 \)):

\[
e^o(k + 1) = y(k + 1) - \phi^T(k)\hat{\theta}(k)
\]

\[
e(k + 1) = \frac{\lambda_1(k)}{\lambda_1(k) + \phi^T(k)F(k)\phi(k)} e^o(k + 1)
\]

\[
\hat{\theta}(k + 1) = \hat{\theta}(k) + \frac{1}{\lambda_1(k)} F(k)\phi(k)e(k + 1)
\]

\[
F(k+1) = \frac{1}{\lambda_1(k)} \left[F(k) - \lambda_2(k) \frac{F(k)\phi(k)\phi^T(k)F(k)}{\lambda_1(k) + \lambda_2(k)\phi^T(k)F(k)\phi(k)} \right]
\]
Additional Material
(you are not responsible for this)

• The Matrix Inversion Lemma

• Relationships for the General PAA

(these will be included in the next version...)
Matrix Inversion Lemma (simplified version)

• Since $\det(I + RL) = \det(I + LR)$, we know that

$$I + RL \text{ is invertible}$$

$$\iff$$

$$I + LR \text{ is invertible}$$

• The matrix inversion lemma (simplified version) states that

$$(I + RL)^{-1} = I - R(I + LR)^{-1}L$$
Matrix Inversion Lemma
(simplified version)

\[(I + RL)^{-1} = I - R(I + LR)^{-1}L\]

Proof:

Define \(\Phi = I - R(I + LR)^{-1}L \)

We want to show that \((I + RL)\Phi = I\)

\[(I + RL)\Phi = (I + RL) - (I + RL)R(I + LR)^{-1}L\]

\[\underbrace{R + RLR = R(I + LR)}\]

\[(I + RL)\Phi = I + RL - R(I + LR)(I + LR)^{-1}L\]

\[= I + RL - RL\]
Matrix Inversion Lemma

If A, C, and $(A+UCV)$ are invertible, then

$$(A+UCV)^{-1} = A^{-1} - A^{-1}U \left(C^{-1} + VA^{-1}U\right)^{-1} VA^{-1}$$

Proof:

$$(A + UCV)^{-1} = \left[(I + UCVA^{-1})A\right]^{-1}$$

$$= A^{-1} \left(I + UCVA^{-1}\right)^{-1}$$

$$= A^{-1} \left[I - UC \left(I + VA^{-1}UC\right)^{-1} VA^{-1}\right]$$

$$= A^{-1} \left[I - U \left[(I + VA^{-1}UC)C^{-1}\right]^{-1} VA^{-1}\right]$$

$$= A^{-1} - A^{-1}U \left(C^{-1} + VA^{-1}U\right)^{-1} VA^{-1}$$
Relationships for General PAA

Proof: We know that

\[F^{-1}(k + 1) = \lambda_1(k) F^{-1}(k) + [\lambda_2(k) \phi(k)] \phi^T(k) \]

By the Matrix Inversion Lemma

\[F(k + 1) = \frac{1}{\lambda_1(k)} F(k) \]

\[- \left[\frac{1}{\lambda_1(k)} F(k) \right] [\lambda_2(k) \phi(k)] \left[\frac{1}{1 + \phi^T(k) \left[\frac{1}{\lambda_1(k)} F(k) \right] [\lambda_2(k) \phi(k)]} \right] \phi^T(k) \left[\frac{1}{\lambda_1(k)} F(k) \right] \]

This simplifies to the stated expression for \(F(k+1) \)
Relationships for General PAA

\[F(k+1)\phi(k) = \frac{1}{\lambda_1(k) + \lambda_2(k)\phi^T(k)F(k)\phi(k)} F(k)\phi(k) \]

Proof:

\[F^{-1}(k+1) = \lambda_1(k)F^{-1}(k) + \lambda_2(k)\phi(k)\phi^T(k) \]

\[\Downarrow \]

\[F(k+1) \left[F^{-1}(k+1) \right] F(k)\phi(k) \]

\[= F(k+1) \left[\lambda_1(k)F^{-1}(k) + \lambda_2(k)\phi(k)\phi^T(k) \right] F(k)\phi(k) \]

\[\Downarrow \]

\[F(k)\phi(k) = \lambda_1(k)F(k+1)\phi(k) \]

\[+ \lambda_2(k)F(k+1)\phi(k)\phi^T(k)F(k)\phi(k) \]

\[= F(k+1)\phi(k) \left[\lambda_1(k) + \lambda_2(k)\phi^T(k)F(k)\phi(k) \right] \]
Relationships for General PAA

\[e(k + 1) = \frac{\lambda_1(k)}{\lambda_1(k) + \phi^T(k)F(k)\phi(k)}e^o(k + 1) \]

Proof:

\[\tilde{\theta}(k + 1) = \tilde{\theta}(k) - \frac{1}{\lambda_1(k)}F(k)\phi(k)e(k + 1) \]

\[\phi^T(k)\tilde{\theta}(k+1) = \phi^T(k) \left[\tilde{\theta}(k) - \frac{1}{\lambda_1(k)}F(k)\phi(k)e(k + 1) \right] \]

\[= \phi^T(k)\tilde{\theta}(k) - \frac{1}{\lambda_1(k)}\phi^T(k)F(k)\phi(k)e(k + 1) \]
Relationships for General PAA

\[e(k + 1) = \frac{\lambda_1(k)}{\lambda_1(k) + \phi^T(k)F(k)\phi(k)} e^o(k + 1) \]

Proof (continued):

From the previous slide,

\[e(k+1) = e^o(k+1) - \frac{1}{\lambda_1(k)}\phi^T(k)F(k)\phi(k)e(k+1) \]

\[\Downarrow \]

\[[\lambda_1(k) + \phi^T(k)F(k)\phi(k)] e(k+1) = \lambda_1(k)e^o(k+1) \]