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ME 233 Advanced Control II

Lecture 19

Least Squares 

Parameter Estimation
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Least Squares Estimation

Model

Where

• observed output  

• known and measurable function

• unknown but constant parameter
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Least Squares Estimation

Model

Where

measured output  
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Batch Least Squares Estimation

Assume that we have collected k data sets:

We want to find the parameter estimate at instant k:

that best fits all collected data in the least squares sense:

collected data 

kept constant in the summation
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Batch Least Squares Estimation

Defining the cost functional

is obtained by solving
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Batch Least Squares Solution

The least squares parameter estimate           

which solves

Satisfies the normal equation:
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Normal Equation Derivation
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Normal Equation Derivation

Taking the partial derivative with respect to

For optimality, we therefore need
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Normal Equation Derivation

For optimality, we need

Therefore, we need
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Batch Least Squares Estimation

The solution of the normal equation

Is given by:

Pseudoinverse



Moore-Penrose pseudoinverse

• Let A have the singular value decomposition

• Then the Moore-Penrose pseudoinverse of A is
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orthogonal matrices

In MATLAB: pinv(A)
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Moore-Penrose pseudoinverse

Let                          and             be its Moore-

Penrose pseudoinverse

Then              has the dimension of             and satisfies:

•

•

•

In this case,  since      

and are Hermitian
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Batch Least Squares Estimation

Assume that we have collected sufficient data

and the data has sufficient  richness so that

has full rank. 

Then,
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Recursive Least Squares (RLS)

Assume that we have collected k-1 sets of data and have 

computed                   using 

Then, given  a new set of data:  

We want to find               in a recursive fashion:
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Recursive Least Squares Algorithm

Define the a-priori output estimate:

and the a-priori output estimation error:

The RLS algorithm  is given by:

where F(k) has the recursive relationship on the next slide
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Recursive Least Squares Gain

The RLS gain              is defined by  

Therefore,

Using the matrix inversion lemma, we obtain
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Recursive Least Squares Derivation

Define the least squares gain matrix

Therefore,
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Recursive Least Squares Derivation

Notice that



19

Recursive Least Squares Derivation

Therefore plugging the previous two results,

And rearranging terms, we obtain
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Recursive Least Squares Estimation

Define the a-priori output estimate:

and the a-priori output estimation error:

The RLS algorithm  is given by:
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Recursive Least Squares Estimation

Recursive computation of

Therefore,

Using the matrix inversion lemma, we obtain
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Recursive Least Squares Estimation

Matrix inversion lemma:

• Multiply by                   on the right and                on the left:

• Multiply by                        on the right:
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Recursive Least Squares Estimation

Matrix inversion lemma:

• Rearranging terms,

• Solving for 
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Recursive Least Squares Estimation

Matrix inversion lemma:

• Plug

into 

to obtain 
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RLS Estimation Algorithm

Initial conditions:

A-priori version:
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RLS Estimation Algorithm

A-posteriori version (used to prove that                      ):
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RLS Estimation Algorithm

Notice that, since 

And the a-priori error is

We obtain,

Define the parameter estimation error:
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RLS Estimation Algorithm

Thus, the a-priori output estimation error can be written as

then,

Similarly, define the a-posteriori output and estimation error :
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RLS Estimation Algorithm

Derivation of the RLS A-posteriori version:

Remember that,

Thus,
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RLS Estimation Algorithm

Multiplying by                                to the left of

to obtain,

Thus,
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RLS Estimation Algorithm

Therefore, from

We obtain,



32

RLS with forgetting factor
The inverse of the gain matrix in the RLS algorithm is given by:

Its trace is given by:

which always increases when 
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RLS with forgetting factor

Similarly, the trace of the gain matrix is given by

always decreases when 

Problem:  RLS eventually stops updating
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RLS with forgetting factor

Key idea: Discount old data, e.g. the term

is small when k is large since 

We can modify cost function to “forget” old data
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RLS with forgetting factor

A-priori version:

Same as RLS 

without 

forgetting 

factor
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RLS with forgetting factor

A-posteriori version (used to prove that                      ):
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RLS with forgetting factor

The gain of the RLS with FF may blow up

if                   is not persistently exciting 

(more on this later)
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General PAA gain formula

• Constant adaptation gain:

• RLS:

• RLS with forgetting factor:

(We talked about this case in the previous lecture)
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General PAA gain formula
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General PAA

A-priori version:

When                      , the parameter estimate equation simplifies to
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General PAA

A-posteriori version (used to prove that                      ):



Additional Material

(you are not responsible for this)

• The Matrix Inversion Lemma

• Relationships for the General PAA
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(these will be included in the next version…)



Matrix Inversion Lemma 

(simplified version)

• Since                                                   , we 

know that

• The matrix inversion lemma (simplified 

version) states that
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Matrix Inversion Lemma 

(simplified version)
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Proof:

Define

We want to show that 



Matrix Inversion Lemma 
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Proof:

If A, C, and (A+UCV) are invertible, then



Relationships for General PAA
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Proof: We know that

By the Matrix Inversion Lemma

This simplifies to the stated expression for F(k+1)



Relationships for General PAA
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Proof:



Relationships for General PAA
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Proof:



Relationships for General PAA
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Proof (continued):

From the previous slide,


