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ME 233 Advanced Control II

Lecture 18

Stability Analysis Using

The Hyperstability Theorem
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Adaptive Control 

Basic Adaptive Control Principle

Controller parameters are not constant, rather, 

they are adjusted in an online fashion  by a 

Parameter Adaptation Algorithm (PAA)

When is adaptive control used?

• Plant parameters are unknown

• Plant parameters are time varying



3

Example of a system with varying parameters

• Temperature control system

flow
meter
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controller

desired
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Adaptive Control Classification

• Continuous time VS discrete time

• Direct VS indirect

• MRAS VS STR
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Model Reference Adaptive Systems 

(MRAS)
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Self-Tuning Regulators (STR)

u(t) y(t)
plant

adjustable
controller
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design
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performance
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plant
parametersestimates
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Identification of a LTI system
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PAA

Parallel model
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Identification of a LTI system
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Parameter

Adaptation

Algorithm

Series-parallel model

regressor

(We will use this model throughout this lecture)
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Plant ARMA Model

Plant model

where
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Unknown plant parameters

Assume ARMA model parameters are unknown

As the unknown parameter vector

Define:
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Regressor vector

Collect all measurable signals in one vector

as the known regressor vector

We define
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Plant ARMA Model

Plant model

where
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Plant ARMA Model

Plant estimate (series-parallel)

where
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Plant output estimate

Plant a-posteriori estimate

Plant a-priori estimate



15

Plant a-posteriori error

error:
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A Parameter Adaptation Algorithm

PAA

Parameter error update law:
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Adaptation Dynamics

a-posteriori error:

Parameter error update law:



0

-

+
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Adaptation Dynamics

PAA

PAA:
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Convergence of Adaptive Systems

Adaptive systems are nonlinear

We need to prove that the algorithms converge:

• Output error convergence

• Parameter error convergence
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Output error Convergence

Our first goal will be to prove the asymptotic convergence of the 

output error:

Two frequently used methods of stability analysis are:

• Stability analysis using Lyapunov’s direct method

– State space approach

• Stability analysis using the Passivity or Hyperstability

theorems

– Input/output approach
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Hyperstability

Hyperstability Theory

• Developed by V.M. Popov to analyze the stability of a class 

of feedback systems (monograph published in 1973)

• Popularized by I.D. Landau for the analysis of adaptive 

systems (first book published in 1979)

LTI

P-Class
nonlinearity

vu

w

0

-

+
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Hyperstability Theory

Hyperstability Theory

• Applies to both continuous time and discrete time systems

• Abuse of notation: We will denote the LTI block by its 

transfer function

LTI

P-Class
nonlinearity

vu

w
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CT  Hyperstability Theory

• A state space description of the LTI Block:

G(s)

P-Class
NL

v(t)u(t)

w(t)

0

-

+
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CT  Hyperstability Theory

• P-class nonlinearity: (passive nonlinearities)

G(s)

P-Class
NL

v(t)u(t)

w(t)

0

-

+

Where               is a constant which is a function of the 

initial conditions
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CT  Hyperstability Theory

Where               is a constant which is a function of the 

initial conditions

P-class 

nonlinearity
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Example: Static P-class NL

v

(v)f
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Example: Static P-class NL

v

(v)f
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Example: Dynamic P-class block

P-NL
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Example: Dynamic P-class block
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Example: Passive mechanical system

K

M

B

v(t)

w(t) = x(t)

Input is force and output is velocity

passive

mechanical 

systemforce velocity
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Example: Passive mechanical system

Input is force and output is velocity

K

M

B

v(t)

w(t) = x(t)

System Energy:
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Example: Passive mechanical system

Input is force and output is velocity

K

M

B

v(t)

w(t) = x(t)

Differentiating energy
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Example: Passive mechanical system

Input is force and output is velocity

K

M

B

v(t)

w(t) = x(t)

Differentiating energy

power input
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Example: Passive mechanical system

Input is force and output is velocity

K

M

B

v(t)

w(t) = x(t)

integrating power,
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Examples of P-class NL
Lemma:

• The parallel combination of two P-class 

nonlinearities is also a P-class nonlinearity.

NL

+

NL
1

2

w v+
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NL

-

+
NL

1

2

w v

Examples of P-class NL
Lemma:

• The feedback combination of two P-class 

nonlinearities is also a P-class nonlinearity.
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CT Hyperstability

Hyperstability: The above feedback system is hyperstable if

there exist positive bounded constants                  such that, 

for any state space realization of G(s),

G(s)

P-Class
NL

v(t)u(t)

w(t)

0

-

+

FOR ALL P-class nonlinearities
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CT Asymptotic Hyperstability

Asymptotic Hyperstability: The above feedback system is 

asymptotically hyperstable if

1. It is hyperstable

2. For all signals                                (I.e. bounded output  of 

any P-class nonlinearity), and any state space realization 

of G(s),

G(s)

P-Class
NL

v(t)u(t)

w(t)

0

-

+
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CT Hyperstability Theorems

Hyperstability Theorem: The above feedback system is 

hyperstable iff the transfer function  G(s) of the LTI block 

is Positive Real.

Asymptotical Hyperstability Theorem: The above feedback 

system is asymptotically hyperstable iff the transfer 

function  G(s) of the LTI block is Strictly Positive Real.

G(s)

P-Class
NL

v(t)u(t)

w(t)

0

-

+
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CT Positive Real TF

Is Positive Real iff:

1. G(s) does not have any unstable poles (I.e. no Re{s} > 0).

2. Any pole of G(s) that is in the imaginary axis does not 

repeat and its associated residue (I.e. the coefficient 

appearing in the partial fraction expansion) is non-

negative.

3.

for all real w’s for which s = j w is not a pole of G(s)
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Strictly Positive Real (SPR) TF

Is Strictly Positive Real (SPR) iff:

1. All poles of G(s) are asymptotically stable.

2. 

for all 
Nyquist Diagram

Real Axis

Im
a
g

in
a
ry

 A
x
is

0 0.2 0.4 0.6 0.8 1

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

Example:



42

Strictly Positive Real (SPR) TF

For scalar rational transfer functions

1. All poles of G(s) are asymptotically stable.

2.                                      for all

Nyquist Diagram
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Note: 

A necessary (but not sufficient) 

condition for G(s) to be SPR is that

its relative degree must be less than or 

equal to 1.
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Kalman Yakubovich Popov Lemma

Is Strictly Positive Real (SPR) if and only if 

• there exist a symmetric and positive definite matrix P,
• matrices L and K,
• and a  constant ε > 0 such that
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Kalman Yakubovich Popov Lemma

Is Strictly Positive Real (SPR) iff there exist symmetric and 

positive definite matrices P and Q, such that:
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SPR TF implies Possitivity

Let                                                                  be SPR 

Then there exist positive definite functions 

and a positive  semi-definite function

Such that the input u(t) output y(t) pair  satisfies
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SPR TF implies Passivity

Proof: We consider a strictly causal transfer function

which is SPR, with state space realization

By the Kalman Yakubovich, Popov lemma, there exist 

symmetric and positive definite matrices P and Q, such that
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SPR TF implies Passivity

Proof: Define the PD function

and compute:

by the Kalman Yakubovich, Popov lemma.
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SPR TF implies Passivity

Proof: Thus, since 

Define the PD function                                    and integrate 
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DT  Hyperstability Theory

• State space description of the LTI Block:

G(q)

NL

v(k)u(k)

w(k)

0

-

+

P-Class
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DT  Hyperstability Theory

• P-class nonlinearity: (passive nonlinearities)

Where               is a bounded  constant.

G(q)

NL

v(k)u(k)

w(k)

0

-

+

P-Class
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Example: Static nonlinearity:

v

(v)f

P-block
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Example: Dynamic P-class block

P-block
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Example: Dynamic P-class block
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Example: Dynamic P-class block
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Example: Dynamic P-class block

P-block
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Example: Dynamic P-class block

P-block



57

Example: Dynamic P-class block
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Example: Dynamic P-class block
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Example: Dynamic P-class block

P-block
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Examples of P-class NL
Lemma:

• The parallel combination of two P-class 

nonlinearities is also a P-class nonlinearity.

• The feedback combination of two P-class 

nonlinearities is also a P-class nonlinearity.

NL
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DT Hyperstability

Hyperstability: The above feedback system is hyperstable if

there exist positive bounded constants                  such that, 

for any state space realization of G(q),

FOR ALL P-class nonlinearities

G(q)

NL

v(k)u(k)

w(k)

0

-

+

P-Class



62

DT Asymptotic Hyperstability

Asymptotic Hyperstability: The above feedback system is 

asymptotically hyperstable if

1. It is hyperstable

2. for any state space realization of G(z),

G(q)

NL

v(k)u(k)

w(k)

0

-

+

P-Class
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DT Hyperstability Theorems

Hyperstability Theorem: The above feedback system is 

hyperstable iff the transfer function  G(z) of the LTI block 

is Positive Real.

Asymptotical Hyperstability Theorem: The above feedback 

system is asymptotically hyperstable iff the transfer 

function  G(z) of the LTI block is Strictly Positive Real.

G(q)

NL

v(k)u(k)

w(k)

0

-

+

P-Class
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Positive Real TF

Is Positive Real iff:

1. G(z) does not have any unstable poles (I.e.  no |z| > 1).

2. Any pole of G(z) that is in the unit circle does not repeat 

and its associated residue (i.e. the coefficient appearing in 

the partial fraction expansion) is non-negative.

3.

for all                      for which z = e j w is not a pole of G(z)
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Strictly Positive Real (SPR) TF

Is Strictly Positive Real (SPR) iff:

1. All poles of G(z) are asymptotically stable.

2. 

for all

Example:

Nyquist Diagram
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Strictly Positive Real (SPR) TF

For scalar rational transfer functions

1. All poles of G(z) are asymptotically stable.

2.                                      for all

Note: 

A necessary (but not sufficient) 

condition for G(z) to be SPR is that

its relative degree must be 0.
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Matrix Inequality Interpretation of SPR

The transfer function

is Strictly Positive Real (SPR) if and only if 

there exists                such that



SPR state-space realization fact

Theorem: If G(z) = C(zI-A)-1B + D is SPR, then

Proof: Choose               such that

Note that

68
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SPR TF is P-class
Let                                                                            be SPR 

Then there exist positive definite functions 

Such that any input u(k) output y(k) pair  satisfies



Shorthand notation
70
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Proof
Let                                                             be SPR 

Choose                such that

Define the Lyapunov function

and the function



Proof
72



Proof
73

From the previous slide

Summing both sides of the equation yields



Proof of the sufficiency part of the Asymptotic 

Hyperstability Theorem - Discrete Time

• Since the nonlinearity is P-class,

74

G(q)

NL

v(k)u(k)

w(k)

0

-

+

P-Class

• Since LTI block is SPR, we can use the choose    

such that 

SPR

P-class



Hyperstability
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G(q)

NL

v(k)u(k)

w(k)
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P-Class

SPR

From the previous proof (SPR TF is P-class), we have

where
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G(q)

NL

v(k)u(k)

w(k)
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P-Class

From the P-class nonlinearity: 

SPR

Rearranging terms,

Hyperstability

Therefore,
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G(q)

NL

v(k)u(k)

w(k)

0
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P-Class

SPR

From the previous slide

Hyperstability

Therefore, the feedback system is hyperstable
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G(q)

NL

v(k)u(k)

w(k)

0

-

+

P-Class

SPR

Asymptotic  Hyperstability

• monotonic nondecreasing sequence in k

• bounded above

Therefore, the feedback system is asymtotically hyperstable
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G(q)

NL

v(k)u(k)

w(k)

0

-

+

P-Class

SPR

Additional Result

Therefore, x(k), u(k), v(k), and w(k) converge to 0

We have already shown that

From this we see that



Stability analysis of Series-parallel ID
80

y(k)-dq B(   )-1q

A(    )
-1q

+

- y(k)^

e(k)

u(k)

Parameter

Adaptation

Algorithm

regressor
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Series-Parallel ID Dynamics 

(review)
a-posteriori error:

Parameter error update law:



0

-

+
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Series-Parallel ID Dynamics 

(review)

PAA

PAA:
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Stability analysis of Series-parallel ID

0

-

+

PAA

Strictly Positive Real
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Stability analysis of Series-parallel ID

0

-

+

PAA
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Stability analysis of Series-parallel ID

0

-

+

PAA

SPR

P-class

By the sufficiency portion of Hyperstability Theorem:
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Stability analysis of Series-parallel ID

0

-

+

PAA

SPR

P-class

By the sufficiency portion of Asymptotic Hyperstability

Theorem:

Q.E.D.
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Stability analysis of Series-parallel ID

0

-

+

PAA

SPR

P-class

By the sufficiency portion of Asymptotic Hyperstability

Theorem:
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How to we implement the PAA?

a-posteriori error & PAA:

Solution: Use the a-priori error

Static

coupling
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How to we implement the PAA?

a-posteriori estimate & PAA:

Solution: Use the a-priori error

Static

coupling
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How to we implement the PAA?

Multiply by

Therefore,



How we implement the PAA

1.

2.

3.

91
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Stability analysis of Series-parallel ID

Under the following assumptions:

is anti-Schur

We have shown that

Now we will show that

Since

Since

y(k)-dq B(   )-1q

A(    )
-1q

+

- y(k)^

e(k)

u(k)

Parameter

Adaptation

Algorithm

regressor
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Stability analysis of Series-parallel ID

Thus, we know that

Remember that

y(k)-dq B(   )-1q

A(    )
-1q

+

- y(k)^

e(k)

u(k)

Parameter

Adaptation

Algorithm

regressor
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Stability analysis of Series-parallel ID

What about the parameter error          ?

We have shown that

since

However, this does not imply that the parameter error goes to zero

We need to impose another condition on u(k) to guarantee that 
the parameter error goes to zero. (persistence of excitation)

y(k)-dq B(   )-1q

A(    )
-1q

+

- y(k)^

e(k)

u(k)

Parameter

Adaptation

Algorithm

regressor


