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Model Form

We consider a state space model of the form

x(k + 1) = Âx(k) + B̂u(k) + B̂ww(k)

y(k) = Ĉx(k) + v(k)

where

I u(k) is the scalar control signal

I y(k) is the scalar measurement signal

I w(k) is the input noise

(white, zero-mean, E{w(k)wT (k)} = W )

I v(k) is the measurement noise

(white, zero-mean, E{v(k)vT (k)} = V )

I E{w(k)vT (k)} = 0



Stationary Kalman Filter V2 (Review)

The optimal state estimator is given by

x̂o(k + 1) = Âx̂o(k) + B̂u(k) + L̂ỹo(k)

ỹo(k) = y(k)− Ĉx̂o(k)

where

L̂ = ÂMĈT [ĈMĈT + V ]−1

M = ÂMÂT + B̂wWB̂T
w − ÂMĈT [ĈMĈT + V ]−1ĈMÂT

Â− L̂Ĉ is Schur

Also, the signal ỹo(k) is zero-mean, white, and has covariance

ĈMĈT + V .
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Alternate Model Form

Using the Kalman Filter V2, we can write

x̂o(k + 1) = Âx̂o(k) + B̂u(k) + L̂ε(k)

y(k) = Ĉx̂o(k) + ε(k)

where ε(k) = ỹo(k).

As a transfer function, this is

Y (z) = [Ĉ(zI − Â)−1B̂]U(z)

+ [1 + Ĉ(zI − Â)−1L̂]E(z)

Recall that 1 + Ĉ(zI − Â)−1L̂ =
det[zI − (Â− L̂Ĉ)]

det[zI − Â]
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Recall that 1 + Ĉ(zI − Â)−1L̂ =
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Alternate Transfer Function Model

From the previous slide, we have that

Y (z) =
B̄(z)

Ā(z)
U(z) +

C̄(z)

Ā(z)
E(z)

where

Ā(z) = zn + a1z
n−1 + · · ·+ an = det[zI − Â]

C̄(z) = zn + c1z
n−1 + · · ·+ cn = det[zI − (Â− L̂Ĉ)]

B̄(z) = b0z
m + · · ·+ bm

Since Â− L̂Ĉ is Schur, the polynomial C̄(z) is Schur
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Polynomials in q−1

We now define d = n−m and the polynomials

A(z−1) = z−nĀ(z) = 1 + a1z
−1 + · · ·+ anz

−n

C(z−1) = z−nC̄(z) = 1 + c1z
−1 + · · ·+ cnz

−n

B(z−1) = z−mB̄(z) = b0 + b1z
−1 + · · ·+ bmz

−m

so that we can write the transfer function from the previous slide as

Y (z) =
z−dB(z−1)

A(z−1)
U(z) +

C(z−1)

A(z−1)
E(z)

Note in particular that C(z−1) is an anti-Schur polynomial of z−1
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A(z−1) = z−nĀ(z) = 1 + a1z
−1 + · · ·+ anz

−n

C(z−1) = z−nC̄(z) = 1 + c1z
−1 + · · ·+ cnz

−n

B(z−1) = z−mB̄(z) = b0 + b1z
−1 + · · ·+ bmz

−m

so that we can write the transfer function from the previous slide as

Y (z) =
z−dB(z−1)

A(z−1)
U(z) +

C(z−1)

A(z−1)
E(z)

Note in particular that C(z−1) is an anti-Schur polynomial of z−1



ARMAX Plant Model

We have now transformed the original state space plant model to

A(q−1)y(k) = q−dB(q−1)u(k) + C(q−1)ε(k)

where C(q−1) is an anti-Schur polynomial of q−1 and ε(k) is

zero-mean white noise with covariance ĈMĈT + V

This type of model is called an ARMAX model because it is an

ARMA model with an eXogenous input.
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Minimum Variance Regulator (MVR) Problem

Given the ARMAX model

A(q−1)y(k) = q−dB(q−1)u(k) + C(q−1)ε(k)

where

I C(q−1) is an anti-Schur polynomial of q−1

I B(q−1) has no zeros on the unit circle

I ε(k) is zero-mean white noise

I The plant has no unstable pole-zero cancelations, i.e. the

polynomials A(q−1) and B(q−1) have no common zeros such

that |q−1| < 1

find the stabilizing feedback control law that minimizes the output

variance E{y2(k)}
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Factorization of B and B̄

In general, the polynomial B̄(q) = qmB(q−1) has

I ms zeros strictly inside the unit circle (stable plant zeros)

I mu zeros strictly outside the unit circle (unstable plant zeros)

Perform the factorization

B(q−1) = Bs(q−1)Bu(q−1)

where

I B̄s(q) = qmsBs(q−1) has its zeros inside the unit circle

(These are the stable plant zeros)

I B̄u(q) = qmuBu(q−1) has its zeros outside the unit circle

(These are the unstable plant zeros)

I B̄u(0) = 1
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Minimum Variance Regulator (MVR) Solution

I The optimal control u∗(k) is given by

Bs(q−1)R(q−1)u∗(k) = −S(q−1)y(k)

where R(q−1) and S(q−1) are found by solving the

Diophantine equation

C(q−1)B̄u(q−1) = A(q−1)R(q−1) + q−dBu(q−1)S(q−1)

where

R(q−1) = 1 + r1q
−1 + · · ·+ rnrq

−nr

S(q−1) = s0 + s1q
−1 + · · ·+ snsq

−ns

and nr = mu + d− 1 and ns = n− 1



Minimum Variance Regulator (MVR) Solution

I The optimal cost is

E{y2(k)} = E{ε2f (k)}

where εf (k) is defined in terms of ε(k) by the ARMA model

B̄u(q−1)εf (k) = R(q−1)ε(k)



Constructing the MVR

1. Find L̂ using a stationary Kalman filter design

2. Construct C(q−1) = q−n det[qI − (Â− L̂Ĉ)]

3. Factor B(q−1) = Bs(q−1)Bu(q−1) as described previously

(don’t forget that B̄u(0) = 1)

4. Solve the Diophantine equation

C(q−1)B̄u(q−1) = A(q−1)R(q−1) + q−dBu(q−1)S(q−1)

5. Form the optimal controller

Bs(q−1)R(q−1)u∗(k) = −S(q−1)y(k)



Solution Comments

I Be careful with Bu(q−1), B̄u(q), and B̄u(q−1)

I Bu(q−1) is a Schur polynomial in q−1

I B̄u(q) is an anti-Schur polynomial in q

I B̄u(q−1) is an anti-Schur polynomial in q−1

I Note that the Diophantine equation involves both Bu(q−1)

and B̄u(q−1).

I Since B̄u(q−1) is anti-Schur, the operator
R(q−1)

B̄u(q−1)
is BIBO.

⇒ εf (k) =
R(q−1)

B̄u(q−1)
ε(k) has bounded covariance
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Special Case: B(q−1) is anti-Schur

When B(q−1) is anti-Schur, we have

I Bs(q−1) = B(q−1)

I Bu(q−1) = B̄u(q) = B̄u(q−1) = 1

I Expressing R(q−1) = 1 + r1q
−1 + · · ·+ rnrq

−nr , the optimal

cost is

E{y2(k)} = E{[R(q−1)ε(k)]2}

= E{[ε(k) + r1ε(k − 1) + · · ·+ rnrε(k − nr)]2}

= E{ε2(k)}+ r21E{ε2(k − 1)}+ · · ·+ r2nr
E{ε2(k − nr)}

= (1 + r21 + · · ·+ r2nr
)E{ε2(k)}

Therefore

E{y2(k)} = (1 + r21 + · · ·+ r2nr
)(ĈMĈT + V )
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Proof Methodology

The proof will be done in 4 parts:

1. Rewrite the system dynamics in a more convenient form

2. Prove that E{z(k − d)εf (k)} = 0, where z(k) is a sequence

to be defined in subsequent slides

3. Prove optimality of proposed control scheme

4. Verify closed-loop stability

Comments on the notation in this proof:

I Capital letters always denote polynomials; lower case letters

denote sequences (except d and q)

I Dependency of polynomials on q−1 will be omitted

e.g. B̄u will refer to B̄u(q−1)

I Dependency of sequences on k will be omitted

e.g. y will refer to y(k)
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Part 1: Rewrite Dynamics

The plant dynamics are

Ay = q−dBu+ Cε

and the Diophantine equation gives

[RA]y = [C − q−dS]y

Combining these two equations gives

R[q−dBu+ Cε] = [C − q−dS]y

⇒ Cy − q−d(Sy +BRu)− CRε = 0
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Part 1: Rewrite Dynamics

From the previous slide:

Cy − q−d(Sy +BRu)− CRε = 0

I Define z(k) in terms of y(k) and u(k) using

Cz = Sy +BRu

(note that we are not necessarily using the optimal control)

I Define εf = Rε

I From the top equation,

Cy − q−dCz − Cεf = 0 ⇒ C(y − q−dz − εf ) = 0

Since C is anti-Schur, we have y − q−dz − εf −→ 0

y(k) = z(k − d) + εf (k)
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Since C is anti-Schur, we have y − q−dz − εf −→ 0

y(k) = z(k − d) + εf (k)
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Part 2: E{z(k − d)εf(k)} = 0

I Since ε(k) = y(k)− E{y(k)|y(k − 1), y(k − 2), . . .}, we use

least squares property 1 to see that

E{y(k − `)ε(k + p)}, ∀` > 0, p ≥ 0

I εf (k+ d− 1) = ε(k+ d− 1) + r1ε(k+ d− 2) + · · ·+ rd−1ε(k)

⇒ E{y(k − `)εf (k + d− 1)} = 0 ∀` > 0

I Since u(k) is a function of y(k), y(k − 1), . . .

E{u(k − `)εf (k + d− 1)} = 0 ∀` > 0

I Since z(k) is a function of y(k), y(k − 1), . . . and

u(k), u(k − 1), . . .

E{z(k − `)εf (k + d− 1)} = 0 ∀` > 0

I Choosing ` = 1 completes part 2
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Part 3: Optimal Control

Recall that

y(k) = z(k − d) + εf (k)

E{z(k − d)εf (k)} = 0

Therefore,
E{y2(k)} = E{z2(k − d)}+ E{ε2f (k)}

Notes:

I At this point, we have only assumed that u(k) stabilizes the

system (so that the relevant covariances are bounded)

I E{ε2f (k)} does not depend on the choice of the control law

I ⇒ We would like to choose u to minimize E{z2}

I If we can make E{z2} = 0, the control must be optimal
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Part 3: Optimal Control

Goal: choose u so that E{z2} = 0

I If we apply the control signal u∗(k) defined by

BRu∗ = −Sy

we have
Cz = BRu∗ + Sy = 0

I C(q−1) is an anti-Schur polynomial ⇒ z(k) −→ 0.

I For this control signal, E{z2} = 0, which means that u∗(k) is

optimal, provided that the closed-loop system is stable

I Also note that E{y2} = E{ε2f}, provided that the closed-loop

system is stable
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Part 4: Closed-loop stability

From the plant dynamics and feedback law, we have[
A −q−dB

S BR

][
y

u

]
=

[
Cε

0

]

⇒

[
y

u

]
=

1

BAR+ q−dBS

[
BR q−dB

−S A

][
Cε

0

]

=
1

B(AR+ q−dS)

[
BRCε

−SCε

]
=

1

BC

[
BRCε

−SCε

]
Since C(q−1)B(q−1) is an anti-Schur polynomial of q−1, the

closed-loop system is stable �
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A-causal but BIBO Systems

Recall that the polynomial Bu(q−1) is Schur

The AR model Bu(q−1)y(k) = u(k) corresponds to the block

diagram

1

Bu(q¡1)

u(k) y(k)

We can interpret the operator
1

Bu(q−1)
in two ways:

1. Causal, but unstable

2. A-causal, but BIBO
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Interpretation 1: Causal, but Unstable

We are considering the AR model Bu(q−1)y(k) = u(k) where

Bu(q−1) = 1 + bu1q
−1 + · · ·+ bumu

q−mu

−→ (1 + bu1q
−1 + · · ·+ bumu

q−mu)y(k) = u(k)

Interpreting the AR model as causal, but unstable corresponds to

y(k) = u(k)− [bu1q
−1 + · · ·+ bumu

q−mu ]y(k)

= u(k)− bu1 y(k − 1)− · · · − bumu
y(k −mu)

−→ y(k) is a function of u(k), u(k − 1), u(k − 2), . . .
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Interpretation 2: A-causal, but BIBO

We are considering the AR model

(1 + bu1q
−1 + · · ·+ bumu

q−mu)y(k) = u(k)

Interpreting the AR model as a-causal, but BIBO corresponds to

bumu
q−muy(k) = u(k)− [1 + bu1q

−1 + · · ·+ bumu−1q
−mu+1]y(k)

⇒ bumu
y(k) = qmuu(k)− [qmu + bu1q

mu−1 + · · ·+ bumu−1q]y(k)

⇒ y(k) =
1

bmu

[u(k +mu)− y(k +mu)− bu1y(k +mu − 1)

− · · · − bumu−1y(k + 1)]

y(k) is a function of u(k +mu), u(k +mu + 1), u(k +mu + 2), . . .
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A-causal but BIBO All-Pass Filter

Let w(k) be the output of the a-causal, but BIBO ARMAX model

Bu(q−1)w(k) = B̄u(q−1)y(k)

This corresponds to the block diagram

¹Bu(q¡1)

Bu(q¡1)

y(k) w(k)

Claim: ∣∣∣∣B̄u(e−jω)

Bu(e−jω)

∣∣∣∣ = 1 ∀ω ∈ [0, 2π]

Proof:

B̄u(q) = qmuBu(q−1) ⇒ B̄u(q−1) = q−muBu(q)

⇒ |B̄u(e−jω)| = |e−jωmuBu(ejω)| = |Bu(ejω)| = |Bu(e−jω)| �
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A-causal but BIBO All-Pass Filter

¹Bu(q¡1)

Bu(q¡1)

y(k) w(k)

The power spectral density of w(k) is

ΦWW (ω) =

∣∣∣∣B̄u(e−jω)

Bu(e−jω)

∣∣∣∣2 ΦY Y (ω) = ΦY Y (ω)

Therefore

ΛWW (0) =
1

2π

∫ π

−π
ΦWW (ω)dω =

1

2π

∫ π

−π
ΦY Y (ω)dω = ΛY Y (0)

E{w2(k)} = E{y2(k)}
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Proof Methodology

The proof will be done in 4 parts:

1. Rewrite the system dynamics in a more convenient form

2. Prove that E{z(k − d)εf (k)} = 0, where z(k) is a sequence

to be defined in subsequent slides

3. Prove optimality of proposed control scheme

4. Verify closed-loop stability

Comments on the notation in this proof:

I Capital letters always denote polynomials; lower case letters

denote sequences (except d and q)

I Dependency of polynomials on q−1 will be omitted

e.g. B̄u will refer to B̄u(q−1)

I Dependency of sequences on k will be omitted

e.g. y will refer to y(k)
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Part 1: Rewrite Dynamics

The plant dynamics are

Ay = q−dBu+ Cε

and the Diophantine equation gives

[RA]y = [CB̄u − q−dBuS]y

Combining these two equations gives

R[q−dBu+ Cε] = [CB̄u − q−dBuS]y

⇒ CB̄uy − q−d(BuSy +BRu)− CRε = 0

Factoring Bu out of the term in parentheses yields

⇒ CB̄uy − q−dBu(Sy +BsRu)− CRε = 0
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Part 1: Rewrite Dynamics

From the previous slide:

CB̄uy − q−dBu(Sy +BsRu)− CRε = 0

I Define z(k) in terms of y(k) and u(k) using

Cz = Sy +BsRu

(note that we are not necessarily using the optimal control)

I Define ε̄f and w by

Buε̄f = Rε Buw = B̄uy

We interpret these relationships as a-causal, but BIBO

I From the top equation,

CBuw − q−dCBuz − CBuε̄f = 0

⇒ CBu(w − q−dz − ε̄f ) = 0
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Part 1: Rewrite Dynamics

So far, we know that

CBu(w − q−dz − ε̄f ) = 0

I Since C is anti-Schur, we have Bu(w − q−dz − ε̄f ) −→ 0

I If we regard
1

Bu(q−1)
as a-causal but BIBO, we have

w − q−dz − ε̄f −→ 0

I We have now obtained

w(k) = z(k − d) + ε̄f (k)

I Also note that, because w(k) =
B̄u(q−1)

Bu(q−1)
y(k)

E{w2(k)} = E{y2(k)}
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Part 2: E{z(k − d)ε̄f(k)} = 0

I Since ε(k) = y(k)− E{y(k)|y(k − 1), y(k − 2), . . .}, we use

least squares property 1 to see that

E{y(k − `)ε(k + p)}, ∀` > 0, p ≥ 0

I Defining εr = Rε, we have

εr(k + nr) = ε(k + nr) + r1ε(k + nr − 1) + · · ·+ rnrε(k)

⇒ E{y(k − `)εr(k + nr + p)} = 0 ∀` > 0, p ≥ 0

I Regarding the relationship Buε̄f = εr as a-causal but BIBO,

and noting that nr = mu + d− 1, we see that ε̄f (k+ d− 1) is

a function of εr(k + nr), εr(k + nr + 1), · · · , which implies

E{y(k − `)ε̄f (k + d− 1)} = 0 ∀` > 0
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Part 2: E{z(k − d)ε̄f(k)} = 0

I Since u(k) is a function of y(k), y(k − 1), . . .

E{u(k − `)ε̄f (k + d− 1)} = 0 ∀` > 0

I Since z(k) is a function of y(k), y(k − 1), . . . and

u(k), u(k − 1), . . .

E{z(k − `)ε̄f (k + d− 1)} = 0 ∀` > 0

I Choosing ` = 1 yields

E{z(k − d)ε̄f (k)} = 0
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Part 3: Optimal Control

So far, we know
w(k) = z(k − d) + ε̄f (k)

E{z(k − d)ε̄f (k)} = 0

E{y2(k)} = E{w2(k)}

⇒ E{y2(k)} = E{z2(k − d)}+ E{ε̄2f (k)}

Notes:

I At this point, we have only assumed that u(k) stabilizes the

system (so that the relevant covariances are bounded)

I The value of E{ε̄2f (k)} does not depend on the control law

I ⇒ We would like to choose u to minimize E{z2}

I If we can make E{z2} = 0, the control must be optimal
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Part 3: Optimal Control

Goal: choose u so that E{z2} = 0

I If we apply the control signal u∗(k) defined by

BsRu∗ = −Sy

we have
Cz = BsRu∗ + Sy = 0

I C(q−1) is an anti-Schur polynomial ⇒ z(k) −→ 0.

I For this control signal, E{z2} = 0, which means that u∗(k) is

optimal, provided that the closed-loop system is stable.

I Also note that E{y2} = E{ε̄2f}, provided that the closed-loop

system is stable
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Part 3: Optimal Control

I Provided that the closed-loop system is stable, we have

E{y2} = E{ε̄2f} where ε̄f is generated by the BIBO a-causal

ARMA model Buε̄f = Rε

I We can instead express the optimal cost in terms of a BIBO

causal ARMA model as

E{y2} = E{ε2f} where εf is the output of B̄uεf = Rε

(Remember that B̄u refers to B̄u(q−1))

I To see this, note that since ε̄f is the output of the a-causal but

BIBO ARMA model Buε̄f = B̄uεf and the operator

(
B̄u

Bu

)
is

an a-causal all-pass filter, we have that E{ε2f} = E{ε̄2f}
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Part 4: Closed-loop stability

From the plant dynamics and feedback law, we have[
A −q−dB

S BsR

][
y

u

]
=

[
Cε

0

]

⇒

[
y

u

]
=

1

BsAR+ q−dBS

[
BsR q−dB

−S A

][
Cε

0

]

=
1

Bs(AR+ q−dBuS)

[
BsRCε

−SCε

]
=

1

CB̄uBs

[
BsRCε

−SCε

]

Since C(q−1)B̄u(q−1)Bs(q−1) is an anti-Schur polynomial of q−1,
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