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The goal is to cancel the effect of D(z) on Y (2)
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Motivation

» Ideally, we would subtract the reconstructed value of D(z)
from U(z)

Y(2)

Gn(2)

Gl (2)

» This would yield the closed-loop dynamics Y (z) = G,,(2)U ()

This controller structure would reconstruct D(z) then subtract it
from U(z) so that the effect of the disturbance is exactly canceled

= This would be useful as an inner loop of a larger control
scheme, BUT...
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Motivation—Problems
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The control structure has some problems that should be resolved

in order for it to be useful:

» Since G, !(z) is typically not proper, it is not realizable

= We cannot reconstruct D(z)

» The system being controlled might not be exactly as given by

the model G, (2)

» Sensor noise will corrupt the reconstructed value of D(z)

» The block diagram above is not well-posed and, in particular,

U(z) is not a realizable function of Y'(2).
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Disturbance Observer

The following control structure is referred to as a disturbance
observer:

P(2) ‘ lV(Z) Ve

+_A o G(2)
_\/+ G;l(Z)
Q(2)
D(z)
The signals are:
U(z) : control input V(z) : measurement noise
D(z) : disturbance D(z) : estimate of D(z)

Y (z) : measured output P(z) : performance output



Disturbance Observer

D(2) P(2) V(2)
U(z) U(2) | v ‘ l Y(z)
- o o
—OGn ()
Q(2)

» The one difference in the control architecture (compared to
the motivation) is the presence of Q(z)

> Q(z) is used to make the dynamics from U(z) and Y () to
D(z) realizable
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Disturbance Observer—Comparison to Motivation

P(2) ‘ lV(Z) o)

+_A S G(2)
—0—1G'()
Q(2)
D(z)

The structure in the Motivation section corresponds to

» G(z) = Gn(2) (the plant is exactly as modeled)
» V(z) = 0 (there is no sensor noise)
» Q(z) =1 (it is possible to realize G, *(2) )
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Derivation of closed-loop dynamics

We will omit the dependency on z to shorten notation
Plant dynamics: Y =G(U + D) +V
Now find the disturbance estimate D in terms of U, D, and V:
D=Q@G,'y -U)
= D=QI|G,'GU+D)+G,;'V —-U]
= D=Q(G;'G-1)U+QG,;'GD+QG;'V
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Derivation of closed-loop dynamics

= U=U-Q(G,'G-1)U-QG,'GD - QG,'V
= [1+Q(G;'G-1U=U-QG,'GD - QG,'V

Now that we have U in terms of D, U, and V, we can solve for P
in terms of D, U, and V



Derivation of closed-loop dynamics

Solve for P in terms of D, U, and V:

P=GD+GU
G
14+ Q(GrlG—1)

= P=GD+ U - QG,'GD — QG 'V]



Derivation of closed-loop dynamics

D(z) P(z) V(z)
U(z) _U(2) [ l Y(z)
-

Solve for P in terms of D, U, and V:

P=GD+ GU
G _
P=GD+ U—-QG 'GD - QG;'V
G(1-Q) G _
= D U
1+ Q(GR'G —1) L +Q(Gr'G - 1)

B GQG;!
14+ Q(Gr'G —1)
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Derivation of closed-loop dynamics

_ G(l j Q) D+ Ci 3
1+Q(Gr'G —1) 1+ Q(GR'G —1)
GQG;!

1+ Q(GhG—1)

Let G(z) = Gn(2)(1 + A(z)) where A(z) is stable

CG(1+A)(1-Q) Go(1+A) - Q(L+A)
P= 1+ QA D+ 1+ QA U= 1+QAV

In forming this relationship, we used that GnG;1 =1, which in
turn demonstrates why we require GG,, to be minimum phase
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Closed-loop dynamics:
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Concerns when choosing Q(z):

1. Robust disturbance rejection: Choose Q(e/*) ~ 1 at
frequencies for which disturbance rejection is important
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Choosing Q(z)

Closed-loop dynamics:

Gn(1+A) -

QA+4),

P=

1+ QA

D+

1+ QA

1+ QA

Concerns when choosing Q(z):

1. Robust disturbance rejection: Choose Q(e/*) ~ 1 at
frequencies for which disturbance rejection is important

2. Sensor noise insensitivity: Choose |Q(e/*)| to be small at
frequencies for which sensor noise is large

3. Robustness: Choose |Q(e/*)| to be small at frequencies for

which |A(e?¥)] is large
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Choosing Q(z)

Concerns when choosing Q(z):

4. Realizability: Choose Q)(z) so that
D(z) = Q(2)[G; (2)Y (z) — U(2)] is realizable

Q(»)
Gn(z)

This is a constraint on the relative degree of Q(z)

= Choose )(z) realizable so that is also realizable
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Adding a disturbance observer to an existing controller

Suppose we have designed a controller C'(z) for the interconnection




Adding a disturbance observer to an existing controller

Suppose we have designed a controller C'(z) for the interconnection

How does this affect the stability of the closed-loop system?
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Adding a disturbance observer to an existing controller

Since we are only interested in stability, we set the exogenous
inputs to zero. Also, we let G(2) = Gp(2)(1 + A(2)).

To use the small-gain theorem, we must simplify this to a feedback
interconnection of A(z) and another system.
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Simplifying the closed-loop representation

Removing A(z) from the interconnection, we have

Omitting dependency on z, we have

f):Q[g"(U+U)—U} - D-0oU
U=—-CG(U+U)—D = U=-CGu(U+U)—-QU

= (1+CG,)U =—(CG,+Q)U
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Closed-loop stability

We now have the simplified closed-loop system representation

U(z)

U(z)

A(z)

Q+CG,

1+ CG,

Using the small-gain theorem, we can therefore guarantee

closed-loop stability if:

1. Gp(z) is minimum phase
2. The following feedback interconnection is stable

(i.e. the nominal closed-loop system without the disturbance

observer is stable)
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Closed-loop stability

We now have the simplified closed-loop system representation

U(z) U(z)

Using the small-gain theorem, we can therefore guarantee
closed-loop stability if:

QM) + C(e)Gn(e™) | 1
1+ C(ed%) Gy (e5%) |A(esw)]’

Vw € [0, 7]

In order to meet this condition, it must be true that
Q(e7¥) % 1 whenever w € [0, 7] is such that |A(e/¥)| > 1.
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