ME 233 – Advanced Control II Lecture 16 Disturbance Observers

Tony Kelman

UC Berkeley

March 29, 2016

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Outline

Motivation

Disturbance observer

Derivation of closed-loop dynamics

Choosing Q(z)

Adding a disturbance observer to an existing feedback controller

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Outline

Motivation

Disturbance observer

Derivation of closed-loop dynamics

Choosing Q(z)

Adding a disturbance observer to an existing feedback controller

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Consider the following plant structure

The signals are:

U(z) : control input D(z) : disturbance Y(z) : output

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Consider the following plant structure

The signals are:

U(z) : control input D(z) : disturbance Y(z) : output

The goal is to cancel the effect of D(z) on Y(z)

▶ Let the plant be given by the transfer function G_n(z), which is <u>minimum phase</u> (i.e. its poles and zeros are strictly inside the unit disk in the complex plane)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- ▶ Let the plant be given by the transfer function G_n(z), which is <u>minimum phase</u> (i.e. its poles and zeros are strictly inside the unit disk in the complex plane)
- Use an inverse plant to reconstruct U(z) + D(z):

- ► Let the plant be given by the transfer function G_n(z), which is <u>minimum phase</u> (i.e. its poles and zeros are strictly inside the unit disk in the complex plane)
- Use an inverse plant to reconstruct U(z) + D(z):

• Subtract U(z) to reconstruct D(z):

 \blacktriangleright Ideally, we would subtract the reconstructed value of D(z) from U(z)

▶ Ideally, we would subtract the reconstructed value of D(z) from U(z)

▶ This would yield the closed-loop dynamics $Y(z) = G_n(z)\overline{U}(z)$

 \blacktriangleright Ideally, we would subtract the reconstructed value of D(z) from U(z)

▶ This would yield the closed-loop dynamics $Y(z) = G_n(z)\overline{U}(z)$

This controller structure would reconstruct D(z) then subtract it from U(z) so that the effect of the disturbance is exactly canceled

 \blacktriangleright Ideally, we would subtract the reconstructed value of D(z) from U(z)

▶ This would yield the closed-loop dynamics $Y(z) = G_n(z)\overline{U}(z)$

This controller structure would reconstruct D(z) then subtract it from U(z) so that the effect of the disturbance is exactly canceled

 \Rightarrow This would be useful as an inner loop of a larger control scheme, <u>BUT...</u>

The control structure has some problems that should be resolved in order for it to be useful:

Since $G_n^{-1}(z)$ is typically not proper, it is not realizable

The control structure has some problems that should be resolved in order for it to be useful:

• Since $G_n^{-1}(z)$ is typically not proper, it is not realizable \Rightarrow We cannot reconstruct D(z)

The control structure has some problems that should be resolved in order for it to be useful:

- ► Since G_n⁻¹(z) is typically not proper, it is not realizable ⇒ We cannot reconstruct D(z)
- \blacktriangleright The system being controlled might not be exactly as given by the model $G_n(z)$

The control structure has some problems that should be resolved in order for it to be useful:

- ► Since G_n⁻¹(z) is typically not proper, it is not realizable ⇒ We cannot reconstruct D(z)
- \blacktriangleright The system being controlled might not be exactly as given by the model $G_n(z)$
- Sensor noise will corrupt the reconstructed value of D(z)

The control structure has some problems that should be resolved in order for it to be useful:

- ► Since G_n⁻¹(z) is typically not proper, it is not realizable ⇒ We cannot reconstruct D(z)
- \blacktriangleright The system being controlled might not be exactly as given by the model $G_n(z)$
- Sensor noise will corrupt the reconstructed value of D(z)
- ► The block diagram above is not well-posed and, in particular, U(z) is not a realizable function of Y(z).

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ うへの

Outline

Motivation

Disturbance observer

Derivation of closed-loop dynamics

Choosing Q(z)

Adding a disturbance observer to an existing feedback controller

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Disturbance Observer

The following control structure is referred to as a disturbance observer:

The signals are:

- U(z) : control input D(z) : disturbance Y(z) : measured output
- V(z) : measurement noise $\hat{D}(z)$: estimate of D(z)P(z) : performance output

Disturbance Observer

- ► The one difference in the control architecture (compared to the motivation) is the presence of Q(z)
- $\blacktriangleright Q(z)$ is used to make the dynamics from U(z) and Y(z) to $\hat{D}(z)$ realizable

Disturbance Observer—Comparison to Motivation

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

The structure in the Motivation section corresponds to

•
$$G(z) = G_n(z)$$
 (the plant is exactly as modeled)

Disturbance Observer—Comparison to Motivation

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

The structure in the Motivation section corresponds to

Disturbance Observer—Comparison to Motivation

The structure in the Motivation section corresponds to

- $G(z) = G_n(z)$ (the plant is exactly as modeled)
- V(z) = 0 (there is no sensor noise)
- Q(z) = 1 (it is possible to realize $G_n^{-1}(z)$)

Outline

Motivation

Disturbance observer

Derivation of closed-loop dynamics

Choosing Q(z)

Adding a disturbance observer to an existing feedback controller

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We will omit the dependency on z to shorten notation

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

We will omit the dependency on z to shorten notation $\label{eq:point} {\sf Plant dynamics:} \ Y = G(U+D) + V$

We will omit the dependency on \boldsymbol{z} to shorten notation

Plant dynamics: Y = G(U + D) + V

Now find the disturbance estimate \hat{D} in terms of U, D, and V:

We will omit the dependency on z to shorten notation Plant dynamics: Y = G(U + D) + V

Now find the disturbance estimate \hat{D} in terms of U, D, and V:

$$\begin{split} \hat{D} &= Q(G_n^{-1}Y - U) \\ \Rightarrow \quad \hat{D} &= Q[G_n^{-1}G(U + D) + G_n^{-1}V - U] \\ \Rightarrow \quad \hat{D} &= Q(G_n^{-1}G - 1)U + QG_n^{-1}GD + QG_n^{-1}V \end{split}$$

Solve for U in terms of D, \overline{U} , and V:

$$U = \bar{U} - \hat{D}$$

$$\Rightarrow \quad U = \bar{U} - Q(G_n^{-1}G - 1)U - QG_n^{-1}GD - QG_n^{-1}V$$

$$\Rightarrow \quad [1 + Q(G_n^{-1}G - 1)]U = \bar{U} - QG_n^{-1}GD - QG_n^{-1}V$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Solve for U in terms of D, \overline{U} , and V:

$$\begin{split} U &= \bar{U} - \hat{D} \\ \Rightarrow \quad U &= \bar{U} - Q(G_n^{-1}G - 1)U - QG_n^{-1}GD - QG_n^{-1}V \\ \Rightarrow \quad [1 + Q(G_n^{-1}G - 1)]U = \bar{U} - QG_n^{-1}GD - QG_n^{-1}V \end{split}$$

Now that we have U in terms of D, \overline{U} , and V, we can solve for P in terms of D, \overline{U} , and V

Solve for P in terms of D, \overline{U} , and V:

$$P = GD + GU$$

$$\Rightarrow P = GD + \frac{G}{1 + Q(G_n^{-1}G - 1)}[\bar{U} - QG_n^{-1}GD - QG_n^{-1}V]$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Solve for P in terms of D, \overline{U} , and V:

$$\begin{aligned} P &= GD + GU \\ \Rightarrow \quad P &= GD + \frac{G}{1 + Q(G_n^{-1}G - 1)}[\bar{U} - QG_n^{-1}GD - QG_n^{-1}V] \end{aligned}$$

$$\begin{split} P &= \frac{G(1-Q)}{1+Q(G_n^{-1}G-1)}D + \frac{G}{1+Q(G_n^{-1}G-1)}\bar{U} \\ &- \frac{GQG_n^{-1}}{1+Q(G_n^{-1}G-1)}V \end{split}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

$$P = \frac{G(1-Q)}{1+Q(G_n^{-1}G-1)}D + \frac{G}{1+Q(G_n^{-1}G-1)}\bar{U} - \frac{GQG_n^{-1}}{1+Q(G_n^{-1}G-1)}V$$

Let $G(z) = G_n(z)(1 + \Delta(z))$ where $\Delta(z)$ is stable

$$P = \frac{G(1-Q)}{1+Q(G_n^{-1}G-1)}D + \frac{G}{1+Q(G_n^{-1}G-1)}\bar{U} - \frac{GQG_n^{-1}}{1+Q(G_n^{-1}G-1)}V$$

Let $G(z) = G_n(z)(1 + \Delta(z))$ where $\Delta(z)$ is stable

$$P = \frac{G_n(1+\Delta)(1-Q)}{1+Q\Delta}D + \frac{G_n(1+\Delta)}{1+Q\Delta}\overline{U} - \frac{Q(1+\Delta)}{1+Q\Delta}V$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● ● ●

$$P = \frac{G(1-Q)}{1+Q(G_n^{-1}G-1)}D + \frac{G}{1+Q(G_n^{-1}G-1)}\bar{U} - \frac{GQG_n^{-1}}{1+Q(G_n^{-1}G-1)}V$$

Let $G(z) = G_n(z)(1 + \Delta(z))$ where $\Delta(z)$ is stable

$$P = \frac{G_n(1+\Delta)(1-Q)}{1+Q\Delta}D + \frac{G_n(1+\Delta)}{1+Q\Delta}\bar{U} - \frac{Q(1+\Delta)}{1+Q\Delta}V$$

In forming this relationship, we used that $G_n G_n^{-1} = 1$, which in turn demonstrates why we require G_n to be minimum phase

・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

Outline

Motivation

Disturbance observer

Derivation of closed-loop dynamics

Choosing Q(z)

Adding a disturbance observer to an existing feedback controller

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Closed-loop dynamics:

$$P = \frac{G_n(1+\Delta)(1-Q)}{1+Q\Delta}D + \frac{G_n(1+\Delta)}{1+Q\Delta}\bar{U} - \frac{Q(1+\Delta)}{1+Q\Delta}V$$

Concerns when choosing Q(z):

1. Robust disturbance rejection: Choose $Q(e^{j\omega}) \approx 1$ at frequencies for which disturbance rejection is important

Closed-loop dynamics:

$$P = \frac{G_n(1+\Delta)(1-Q)}{1+Q\Delta}D + \frac{G_n(1+\Delta)}{1+Q\Delta}\bar{U} - \frac{Q(1+\Delta)}{1+Q\Delta}V$$

Concerns when choosing Q(z):

- 1. Robust disturbance rejection: Choose $Q(e^{j\omega}) \approx 1$ at frequencies for which disturbance rejection is important
- 2. Sensor noise insensitivity: Choose $|Q(e^{j\omega})|$ to be small at frequencies for which sensor noise is large

Closed-loop dynamics:

$$P = \frac{G_n(1+\Delta)(1-Q)}{1+Q\Delta}D + \frac{G_n(1+\Delta)}{1+Q\Delta}\bar{U} - \frac{Q(1+\Delta)}{1+Q\Delta}V$$

Concerns when choosing Q(z):

- 1. Robust disturbance rejection: Choose $Q(e^{j\omega}) \approx 1$ at frequencies for which disturbance rejection is important
- 2. Sensor noise insensitivity: Choose $|Q(e^{j\omega})|$ to be small at frequencies for which sensor noise is large
- 3. Robustness: Choose $|Q(e^{j\omega})|$ to be small at frequencies for which $|\Delta(e^{j\omega})|$ is large

Concerns when choosing Q(z):

4. Realizability: Choose Q(z) so that $\hat{D}(z) = Q(z)[G_n^{-1}(z)Y(z) - U(z)]$ is realizable

Concerns when choosing Q(z):

4. Realizability: Choose Q(z) so that $\hat{D}(z) = Q(z)[G_n^{-1}(z)Y(z) - U(z)]$ is realizable \Rightarrow Choose Q(z) realizable so that $\frac{Q(z)}{G_n(z)}$ is also realizable

Concerns when choosing Q(z):

4. Realizability: Choose Q(z) so that $\hat{D}(z) = Q(z)[G_n^{-1}(z)Y(z) - U(z)]$ is realizable \Rightarrow Choose Q(z) realizable so that $\frac{Q(z)}{G_n(z)}$ is also realizable

This is a constraint on the relative degree of Q(z)

Outline

Motivation

Disturbance observer

Derivation of closed-loop dynamics

Choosing Q(z)

Adding a disturbance observer to an existing feedback controller

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Suppose we have designed a controller C(z) for the interconnection

and we would like to add a disturbance observer:

Suppose we have designed a controller C(z) for the interconnection

and we would like to add a disturbance observer:

How does this affect the stability of the closed-loop system?

Since we are only interested in stability, we set the exogenous inputs to zero. Also, we let $G(z) = G_n(z)(1 + \Delta(z))$.

Since we are only interested in stability, we set the exogenous inputs to zero. Also, we let $G(z) = G_n(z)(1 + \Delta(z))$.

Since we are only interested in stability, we set the exogenous inputs to zero. Also, we let $G(z) = G_n(z)(1 + \Delta(z))$.

To use the small-gain theorem, we must simplify this to a feedback interconnection of $\Delta(z)$ and another system.

Simplifying the closed-loop representation

Removing $\Delta(z)$ from the interconnection, we have

Simplifying the closed-loop representation

Removing $\Delta(z)$ from the interconnection, we have

Omitting dependency on z, we have

$$\hat{D} = Q \left[\frac{G_n}{G_n} (\tilde{U} + U) - U \right] \implies \hat{D} = Q\tilde{U}$$
$$U = -CG_n (\tilde{U} + U) - \hat{D} \implies U = -CG_n (\tilde{U} + U) - Q\tilde{U}$$
$$\implies (1 + CG_n)U = -(CG_n + Q)\tilde{U}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

We now have the simplified closed-loop system representation

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

We now have the simplified closed-loop system representation

Using the small-gain theorem, we can therefore guarantee closed-loop stability if:

1. $G_n(z)$ is minimum phase

We now have the simplified closed-loop system representation

Using the small-gain theorem, we can therefore guarantee closed-loop stability if:

- 1. $G_n(z)$ is minimum phase
- 2. The following feedback interconnection is stable

We now have the simplified closed-loop system representation

Using the small-gain theorem, we can therefore guarantee closed-loop stability if:

- 1. $G_n(z)$ is minimum phase
- 2. The following feedback interconnection is stable

(i.e. the <u>nominal</u> closed-loop system <u>without</u> the disturbance observer is stable)

We now have the simplified closed-loop system representation

Using the small-gain theorem, we can therefore guarantee closed-loop stability if:

3.
$$\left|\frac{Q(e^{j\omega}) + C(e^{j\omega})G_n(e^{j\omega})}{1 + C(e^{j\omega})G_n(e^{j\omega})}\right| < \frac{1}{|\Delta(e^{j\omega})|}, \quad \forall \omega \in [0,\pi]$$

We now have the simplified closed-loop system representation

Using the small-gain theorem, we can therefore guarantee closed-loop stability if:

3.
$$\left|\frac{Q(e^{j\omega}) + C(e^{j\omega})G_n(e^{j\omega})}{1 + C(e^{j\omega})G_n(e^{j\omega})}\right| < \frac{1}{|\Delta(e^{j\omega})|}, \quad \forall \omega \in [0,\pi]$$

In order to meet this condition, it must be true that $Q(e^{j\omega}) \not\approx 1$ whenever $\omega \in [0, \pi]$ is such that $|\Delta(e^{j\omega})| \ge 1$.