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Motivation

Consider the following plant structure

G(z)
U(z)

D(z)

Y (z)

The signals are:

U(z) : control input
D(z) : disturbance
Y (z) : output

The goal is to cancel the effect of D(z) on Y (z)
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Motivation

I Ideally, we would subtract the reconstructed value of D(z)
from U(z)
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I This would yield the closed-loop dynamics Y (z) = Gn(z)Ū(z)

This controller structure would reconstruct D(z) then subtract it
from U(z) so that the effect of the disturbance is exactly canceled

⇒ This would be useful as an inner loop of a larger control
scheme, BUT...
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Motivation—Problems
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The control structure has some problems that should be resolved
in order for it to be useful:

I Since G−1
n (z) is typically not proper, it is not realizable

⇒ We cannot reconstruct D(z)

I The system being controlled might not be exactly as given by
the model Gn(z)

I Sensor noise will corrupt the reconstructed value of D(z)

I The block diagram above is not well-posed and, in particular,
U(z) is not a realizable function of Y (z).
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Disturbance Observer
The following control structure is referred to as a disturbance
observer:

The signals are:

U(z) : control input V (z) : measurement noise

D(z) : disturbance D̂(z) : estimate of D(z)
Y (z) : measured output P (z) : performance output



Disturbance Observer

I The one difference in the control architecture (compared to
the motivation) is the presence of Q(z)

I Q(z) is used to make the dynamics from U(z) and Y (z) to
D̂(z) realizable



Disturbance Observer—Comparison to Motivation

The structure in the Motivation section corresponds to

I G(z) = Gn(z) (the plant is exactly as modeled)

I V (z) = 0 (there is no sensor noise)

I Q(z) = 1 (it is possible to realize G−1
n (z) )
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Derivation of closed-loop dynamics

We will omit the dependency on z to shorten notation

Plant dynamics: Y = G(U +D) + V

Now find the disturbance estimate D̂ in terms of U , D, and V :

D̂ = Q(G−1
n Y − U)

⇒ D̂ = Q[G−1
n G(U +D) +G−1

n V − U ]

⇒ D̂ = Q(G−1
n G− 1)U +QG−1

n GD +QG−1
n V
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Derivation of closed-loop dynamics

Solve for U in terms of D, Ū , and V :

U = Ū − D̂
⇒ U = Ū −Q(G−1

n G− 1)U −QG−1
n GD −QG−1

n V

⇒ [1 +Q(G−1
n G− 1)]U = Ū −QG−1

n GD −QG−1
n V

Now that we have U in terms of D, Ū , and V , we can solve for P
in terms of D, Ū , and V
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Ū

− GQG−1
n

1 +Q(G−1
n G− 1)

V

Let G(z) = Gn(z)(1 + ∆(z)) where ∆(z) is stable

P =
Gn(1 + ∆)(1−Q)

1 +Q∆
D +

Gn(1 + ∆)

1 +Q∆
Ū − Q(1 + ∆)

1 +Q∆
V

In forming this relationship, we used that GnG
−1
n = 1, which in

turn demonstrates why we require Gn to be minimum phase
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Choosing Q(z)

Closed-loop dynamics:

P =
Gn(1 + ∆)(1−Q)

1 +Q∆
D +

Gn(1 + ∆)

1 +Q∆
Ū − Q(1 + ∆)

1 +Q∆
V

Concerns when choosing Q(z):

1. Robust disturbance rejection: Choose Q(ejω) ≈ 1 at
frequencies for which disturbance rejection is important

2. Sensor noise insensitivity: Choose |Q(ejω)| to be small at
frequencies for which sensor noise is large

3. Robustness: Choose |Q(ejω)| to be small at frequencies for
which |∆(ejω)| is large
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Choosing Q(z)

Concerns when choosing Q(z):

4. Realizability: Choose Q(z) so that
D̂(z) = Q(z)[G−1

n (z)Y (z)− U(z)] is realizable

⇒ Choose Q(z) realizable so that
Q(z)

Gn(z)
is also realizable

This is a constraint on the relative degree of Q(z)
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Adding a disturbance observer to an existing controller
Suppose we have designed a controller C(z) for the interconnection

G(z)
U(z)

D(z)

Y (z)

P (z) V (z)

C(z)

¡

and we would like to add a disturbance observer:

G¡1n (z)

G(z)
¹U(z) U(z)

D(z)

D̂(z)

Y (z)

+¡

P (z) V (z)

Q(z)

+¡
C(z)

¡

How does this affect the stability of the closed-loop system?
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Since we are only interested in stability, we set the exogenous
inputs to zero. Also, we let G(z) = Gn(z)(1 + ∆(z)).

G¡1n (z)

¹U(z) U(z)

D̂(z)

+¡

Gn(z)

Q(z)

+¡
C(z)

¡

¢(z) ~U(z)

To use the small-gain theorem, we must simplify this to a feedback
interconnection of ∆(z) and another system.
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Simplifying the closed-loop representation

Removing ∆(z) from the interconnection, we have
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Omitting dependency on z, we have

D̂ = Q

[
Gn

Gn
(Ũ + U)− U

]
⇒ D̂ = QŨ

U = −CGn(Ũ + U)− D̂ ⇒ U = −CGn(Ũ + U)−QŨ
⇒ (1 + CGn)U = −(CGn +Q)Ũ
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Closed-loop stability
We now have the simplified closed-loop system representation

¢(z)

¡Q+CGn

1 +CGn

U(z) ~U(z)

Using the small-gain theorem, we can therefore guarantee
closed-loop stability if:

1. Gn(z) is minimum phase

2. The following feedback interconnection is stable

Gn(z)C(z)

¡

(i.e. the nominal closed-loop system without the disturbance
observer is stable)
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Closed-loop stability

We now have the simplified closed-loop system representation

¢(z)
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U(z) ~U(z)

Using the small-gain theorem, we can therefore guarantee
closed-loop stability if:

3.

∣∣∣∣Q(ejω) + C(ejω)Gn(ejω)

1 + C(ejω)Gn(ejω)

∣∣∣∣ < 1

|∆(ejω)|
, ∀ω ∈ [0, π]

In order to meet this condition, it must be true that
Q(ejω) 6≈ 1 whenever ω ∈ [0, π] is such that |∆(ejω)| ≥ 1.
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