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ME 233 Advanced Control II

Lecture 15

Deterministic Input/Output Approach to 

SISO Discrete-Time Systems

Repetitive Control
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Deterministic SISO ARMA models

SISO ARMA model

Where all inputs and outputs are scalars:

• control input  

• is a periodic disturbance of period N

• output



3

Repetitive control assumptions

Both the disturbance and the reference model 

output are periodic sequences,

where N is a known and large number
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Deterministic SISO ARMA models

Where the polynomials

are co-prime and   d is the known pure time delay

Also, the polynomials B(q-1) and (1-q -N) are co-prime 
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Deterministic SISO ARMA models
The zero polynomial:

has 

• mu zeros that we do not want to cancel.

• ms zeros inside the unit circle (asymptotically stable) 

that we do want to cancel.

is anti-Schur

has the zeros (in q) that we 

do not want to cancel
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Deterministic SISO ARMA models
The zero polynomial:

Without loss of generality, we will assume that 
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Block Diagram

u(k) y(k)-dq B(   )-1q

A(    )
-1qR(    )

-1q

1

S(    )
-1q

d(k)

-

+
C  (    )

-1qR

+ +e(k) u  (k)r

-

d
y (k)

Control strategy: We design the controller in two stages

1. Minor-loop pole placement: Place minor-loop poles

(these will be cancelled later) 

2. Repetitive compensator: Reject periodic disturbance

Follow periodic reference
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Control Objectives
1. Minor-loop Pole Placement: The poles of the 

minor-loop system are placed at specific locations in 

the complex plane. They will be cancelled later.

• Minor-loop pole polynomial:

Where:

• cancelable plant zeros

• anti-Schur polynomial chosen by the designer
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Control Objectives

2. Tracking: The output sequence             must 

asymptotically follow a reference sequence             

which is periodic

• Error signal:

3. Disturbance rejection: The closed loop system 

must reject a class of deterministic disturbances             

which satisfy
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Step1: Minor-loop pole placement

Diophantine equation: Obtain polynomials

that satisfy:

plant zerosPlant polesClosed-loop poles

We will factor

out the

polynomial next

The disturbance annihilating polynomial has not been included
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Minor-loop pole placement

Diophantine equation: Obtain polynomials

which satisfy:

Unstable plant zerosPlant poles

The disturbance annihilating polynomial has not been included

Closed-loop 

poles
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Diophantine equation

Solution: 
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Minor-loop pole placement

u(k) y(k)-dq B(   )-1q

A(    )
-1qR(    )

-1q

1

S(    )
-1q

d(k)

+

-

+
u (k)
r
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Minor-loop pole placement

u(k) y(k)-dq B(   )-1q

A(    )
-1qR(    )

-1q

1

S(    )
-1q

d(k)

+

-

+
u (k)
r

Closed-loop dynamics

filtered repetitive disturbance
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y(k)-dq B (    )-1q

A  (     )
-1q

d(k)

-

++ u  (k)r

C  (    )
-1qR

d
y (k) u

c

-dq B(   )-1q

A  (     )
-1qc

R (   )q-1
d  (k)f

e(k)

,

,

,

Equivalent Block Diagram

Notice that      is still a periodic disturbance

repetitive 

compensator
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Equivalent Block Diagram

where

y(k)

-

++ u  (k)r

C  (    )
-1qR

d
y (k) e(k)

d  (k)f

G  (    )
-1qc

repetitive 

compensator
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Repetitive Compensator

Repetitive compensator strategy:

1. Cancel stable poles and delay 

2. Zero-phase error compensation for

3. Include annihilating polynomial in the 

denominator

y(k)

-

++ u  (k)r

C  (    )
-1qR

d
y (k) e(k)

d  (k)f

G  (    )
-1qc

repetitive 

compensator

Not q -1
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Repetitive Compensator

Repetitive compensator :

y(k)

-

++ u  (k)r

C  (    )
-1qR

d
y (k) e(k)

d  (k)f

G  (    )
-1qc

so that CR is implementable
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Repetitive Compensator

• Closed-loop dynamics

y(k)

-

++ u  (k)r

C  (    )
-1qR

d
y (k) e(k)

d  (k)f

G  (    )
-1qc
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Repetitive Controller

Closed-loop dynamics: doing a bit of algebra, we 

obtain,

Where the closed-loop poles are the zeros of
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Repetitive Controller

since,

Where

we obtain



22

Repetitive Controller

Theorem

The tracking error                     if the gains 

are selected as follows:

1.

2. 
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Closed-loop poles for minimum phase zeros

Consider now the case when there are no unstable zeros, 

e.g.

Then the closed-loop poles are given by

choose b = 1 so that
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Closed-loop poles for minimum phase zeros

For the case when the are no unstable zeros,

the closed-loop poles are given by the roots of

When 0 < kr < 2, we have 

N asymptotically stable closed-loop poles

Case 1: 0 < kr · 1

Case 1: 1 < kr < 2
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Repetitive control example

Assume that N = 4
y(k)

-

++ u  (k)r

C  (    )
-1qR

d
y (k) e(k)

d  (k)f

G  (    )
-1qc

Choose



26

Repetitive control example

Open-loop TF

y(k)

-

++ u  (k)r

C  (    )
-1qR

d
y (k) e(k)

d  (k)f

G  (    )
-1qc

Closed-loop poles:

Root Locus

Real Axis

Im
a
g

 A
x
is

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5
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Closed-loop poles for non-minimum phase zeros

Now consider the general case, i.e. there are unstable zeros

Assume that we have chosen b such that

The closed-loop poles are the roots of
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Closed-loop poles for non-minimum phase zeros

The closed-loop poles are the roots of
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Closed-loop poles for non-minimum phase zeros

Therefore is equivalent to 

B (    )-1z

Nz

u
B (   )z

u
- 1

-

r(k /b)
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Closed-loop poles for non-minimum phase zeros

By Nyquist’s theorem, the closed-loop system is  asymptotically stable if 

there are no encirclements around –1.

B (    )-1z

Nz

u
B (   )z

u
- 1

-

r(k /b)

This is guaranteed if the following hold for

1-1
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Closed-loop poles for non-minimum phase zeros

Case 1:

We have
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Closed-loop poles for non-minimum phase zeros

Case 2:

We have

Since Bu(q-1) and 1-q -N are co-prime, we have that

Closed-loop stability
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Repetitive Compensator

Repetitive compensator:

y(k)

-

++ u  (k)r

C  (    )
-1qR

d
y (k) e(k)

d  (k)f

G  (    )
-1qc

The controller has N open-loop poles 

on the unit circle
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Repetitive control example

Assume that N = 4
y(k)

-

++ u  (k)r

C  (    )
-1qR

d
y (k) e(k)

d  (k)f

G  (    )
-1qc

Choose
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Repetitive control example

Open-loop TF

y(k)

-

++ u  (k)r

C  (    )
-1qR

d
y (k) e(k)

d  (k)f

G  (    )
-1qc

Closed-loop poles:

Root Locus

Real Axis

Im
a
g

 A
x
is

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5
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Repetitive control, inexact cancellation

Assume that     N = 4 y(k)

-

++ u  (k)r

C  (    )
-1qR

d
y (k) e(k)

d  (k)f

G  (    )
-1qc

But, unmodeled dynamics are not cancelled

Plant:

therefore,
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Repetitive control, inexact cancellation

Open loop TF

y(k)

-

++ u  (k)r

C  (    )
-1qR

d
y (k) e(k)

d  (k)f

G  (    )
-1qc

Closed-loop poles:

Root Locus

Real Axis

Im
a
g

 A
x
is

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5
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Repetitive control, inexact cancellation

y(k)

-

++ u  (k)r

C  (    )
-1qR

d
y (k) e(k)

d  (k)f

G  (    )
-1qc

Closed-loop poles:

Repetitive control is not robust to unmodeled dynamics
Root Locus

Real Axis

Im
a
g

 A
x
is

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5
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Robust Repetitive Compensator

y(k)

-

++ u  (k)r

C  (    )
-1qR

d
y (k) e(k)

d  (k)f

G  (    )
-1qc

Controller’s N open-loop poles are no longer on the unit circle

moving average filter with zero-phase shift 

characteristics

Add Q-filter
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Robust Repetitive Compensator

moving average filter with zero-phase shift 

characteristics

has unit DC gain and gain decreases as 

frequency increases
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Robust Repetitive Compensator

Notice that the disturbance d(k) is no longer completely

annihilated, since

However, with a proper choice of Q filter, 
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Robust Rep. control, inexact cancellation

Assume that     N = 4 y(k)

-

++ u  (k)r

C  (    )
-1qR

d
y (k) e(k)

d  (k)f

G  (    )
-1qc

But, unmodeled dynamics are not cancelled

Plant:

where,
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Robust Rep. control, inexact cancellation

y(k)

-

++ u  (k)r

C  (    )
-1qR

d
y (k) e(k)

d  (k)f

G  (    )
-1qc

Closed-loop poles:

Root Locus

Real Axis

Im
a
g

 A
x
is

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

Closed-loop system is

asymptotically stable for

a finite range of kr


