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ME 233 Advanced Control II

Lecture 14

Deterministic Input/Output Approach to 

SISO Discrete Time Systems

Pole Placement, Disturbance Rejection 

and Tracking Control
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SISO ARMA models

• SISO State space model

Where all inputs and outputs are scalars:

• control input  

• output

• state
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SISO transfer function

relative degree 
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SISO transfer function

relative degree 

U(z) control input

Y(z) output
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ARMA  Models

Define:

• the back-step operator             such that

• the polynomials

• relative degree (pure time delay)
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Back-step operator

Relationship to Z-transform

Similarly,
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SISO ARMA models  

Auto-Regressive Moving Average
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SISO ARMA models with persistent disturbances

SISO ARMA model with disturbance 

Where all inputs and outputs are scalars:

• control input  

• persistent (deterministic) but unknown disturbance

• output
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Deterministic SISO ARMA models

Where polynomials:

are co-prime and   d is the known pure time delay



Polynomials in q-1

• Monic polynomial
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constant coefficient is 1

leading coefficient is 1

monic



whenever p satisfies A(p) = 0

Polynomials in q-1

• Co-prime polynomials have no common roots
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are co-prime if and only if  

The polynomials



Polynomials in q-1

• Anti-Schur polynomials have all of their roots outside the 

unit circle
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For example, if the polynomial

is anti-Schur, then |q-1| > 1 whenever A(q-1) = 0



for all sequences                        that satisfy 

Polynomials in q-1
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is anti-Schur if and only if  
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Factorization of the zero polynomial B(q-1)

Assume the m order zero polynomial             has

• mu zeros that we do not want to cancel.

• its remaining ms zeros inside the unit circle; these are 

the zeros we will cancel



15

Factorization of the zero polynomial B(q-1)

Assume the m order zero polynomial             has

• mu zeros that we do not want to cancel.

• its remaining ms zeros inside the unit circle; these are 

the zeros we will cancel

is anti-Schur

has the zeros (in q) that we 

do not want to cancel
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Example
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Example
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we could have chosen to cancel these 2
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Deterministic SISO ARMA models
The zero polynomial:

Without loss of generality, we will assume that 
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Control Objectives
1. Pole Placement: The poles of the closed-loop 

system must be placed at specific locations in the 

complex plane.

• Closed-loop polynomial:

Where:

• cancelable plant zeros

• anti-Schur polynomial of the form

chosen by 

the designer
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Control Objectives

2. Tracking: The output sequence             must follow 

a reference sequence                which is known

In general, yd(k) can be generated by a reference model of 

the form

The design of Am(q -1) and Bm(q -1) is not a part of this 

control design technique and these polynomials do not 

enter into the analysis

anti-Schur polynomial
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Control Objectives

2. Tracking: The output sequence             must follow 

a reference sequence                which is known

• Reference model:

Where:

• reference output sequence, which is known in 

advance (i.e. yd(k+L) is available at instance k for                 
some L>d).

• anti-Schur polynomial

• polynomial
chosen by 

the designer
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Control Objectives

3. Disturbance rejection: The closed-loop system 

must reject a class of persistent disturbances

• Disturbance model:

Where

• is a known annihilating polynomial 

with zeros on the unit circle

• are co-prime
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Deterministic disturbance examples

a) Constant disturbance:

Then,

b) Sinusoidal disturbance of known frequency:

Then,
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Deterministic disturbance examples

c) Periodic disturbance of known period

Then,

In all of these three examples, the polynomial                                      

has its roots on the unit circle.
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Control Law
• Feedback and feedforward actions:

Feedforward action

(a-causal)

r(k) u(k) y(k)u (k) -dq B(   )-1q

A(    )
-1qR(    )

-1q

1

S(    )
-1q

-1qT(      )

d(k)

+

-

+
,q

reference output
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Closed-Loop TF from r(k) to y(k)

Closed-loop characteristic polynomial

)
y(k)
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Closed-Loop TF from r(k) to y(k)

If we let              have the special structure 
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Closed-Loop TF from r(k) to y(k)

Closed-loop characteristic polynomial

y(k)

Given Ac(q
-1), we would like to find polynomials  

R(q-1) and S(q-1) so that
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The Diophantine (Bezout) equation

• Given the  co-prime polynomials

– is order n and has constant term 1

– is order m  

• and a polynomial of order nc with constant term 1
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The Diophantine (Bezout) equation

We wish to find polynomials

that satisfy the Diophantine equation:

given

same order as
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The Diophantine (Bezout) equation

Expanding in terms of              coefficients: 

order order order
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The Diophantine (Bezout) equation

Expanding in terms of              coefficients: 

We obtain:

given on next slide
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The Diophantine (Bezout) equation

Where the matrix 

is given by: 
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columns columns
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If ns = n - 1, then these rows of zeros will not be here 
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The Diophantine (Bezout) equation

Theorem: D is nonsingular iff the polynomials

and                     are co-prime.

The solution to the Diophantine equation is:



Example:
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Let

Solve for 

order nc = 2 

order n = 2 

order m = 2 

order m = 2 

order ns 



Example:
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4 equations and 4 unknowns



Example:
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Solution:

Equating coefficients of powers of  q-1
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Return to the Control Problem…
• Feedback and feedforward actions:

Feedforward (a-causal)

r(k) u(k) y(k)u (k) -dq B(   )-1q

A(    )
-1qR(    )

-1q

1

S(    )
-1q

-1qT(      )

d(k)

+

-

+
,q



41

Feedback Controller

Diophantine equation: Obtain polynomials

that satisfy:

plant zerosPlant polesClosed-loop 

poles

We will factor

out the

polynomial next
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Controller Diophantine equation

Factor out                 polynomial

Therefore, we want to find R’(q-1) and S(q-1) such that
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Feedback Controller

Diophantine equation: Obtain polynomials

which satisfy:

Unstable plant zerosPlant poles

Disturbance annihilating polynomial

Closed-loop 

poles without

cancelled zeros
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Use previous solution of the Diophantine equation



45

Diophantine equation

Solution: 

These are the 

controller 

parameters!
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Feedback Controller

where 

If the degree of the disturbance annihilator 

polynomial, nd is large (e.g. N is large), 

then nr and ns are also large

Then, the solution of the Diophantine equation 

may be ill conditioned.
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Example

Plant:

Disturbance:

Select closed-loop poles:

Zeros:
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Diophantine equation

Solution:
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Example

Control:
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Feedback Control Law
Feedback control action:



Proof – block diagram algebra

The closed-loop dynamics is from r(k) and d(k)  to y(k)
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Proof – block diagram algebra

The closed-loop dynamics from d(k) to y(k) ( r(k) = 0 )

52

Substitute:

pole-zero

cancellation Diophantine  equation

1



Proof – block diagram algebra

The closed-loop dynamics from d(k) to y(k) ( r(k) = 0 )

53

pole-zero

cancellation Diophantine  equation

1



Proof – block diagram algebra

The closed-loop dynamics from r(k) and d(k)  to y(k)
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Proof – block diagram algebra
55

Substitute:

pole-zero

cancellation Diophantine  equation

1



Proof – block diagram algebra
56

pole-zero

cancellation Diophantine  equation

1
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Example

Control:
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Example

Closed-loop dynamics:
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Feedback Control Law
The feedback control action:

Results in the following closed-loop input/output dynamics:

well-damped zeros



Feedforward control objective is to make y(k)
follow yd(k) as closely as possible.

how well the objective met  depends on  

whether the plant has unstable zeros or not

60

Feedforward Control  

or Goal:
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Feedforward Control Synthesis

closed loop dynamics

from r(k) to y(k) 



unstable zeros

cannot be inverted

r(k)y  (k)
d y(k)

-dq B (   )-1q

A  (    )
-1q

u

c ’
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Feedforward control  principle: plant inversion

closed-loop pole 

polynomial 

(anti-Schur)

pure step delays
≈1

approximate inverse

we need to know yd(k+d)
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Perfect Tracking Feedforward Control

Perfect tracking can be achieved if all plant zeros are 

cancelable, e.g.

in this case

r(k)y  (k)
d y(k)

-dq B (   )-1q

A  (    )
-1q

u

c ’
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Tracking with unstable zeros

• When the plant has unstable zeros we need to find 

an approximate inverse 

r(k)y  (k)
d y(k)

-dq B (   )-1q

A  (    )
-1q

u

c ’



Then we can interpret                         in two ways:

• is causal but unstable

• is a-causal but BIBO
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A-causal Bounded-Input  Bounded-Output (BIBO) 

realization of a purely unstable operator

Let

i.e. all zeros of                                             are 

outside the unit circle
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A-causal Bounded-Input  Bounded-Output (BIBO) 

realization of a purely unstable operator

Example: 

Using an infinite series expansion,

infinite dimensional a-causal operator

unstable causal operator
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A-causal BIBO realization of a purely unstable operator

Thus,  

Can be realized either as:

(unstable) 

or

(a-causal BIBO)
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A-causal BIBO approximation of a purely unstable operator

We will now describe two methods of approximating a

purely unstable operator:  

1) Truncated  a-casual series expansion:

2) Zero-phase error feedforward operator:

(developed by Prof. Tomizuka) Not q-1
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Example: realizing 

Let,  

1) Truncated  a-casual series expansion:

2) Zero-phase error feedforward operator: Not q-1
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Zero-phase error tracking

One of the most popular feedforward techniques for 

systems with unstable zeros.

Define the zero-phase operator
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Zero-phase error transfer function

A-causal zero-phase transfer function:

Properties:

• It has zero-phase, i.e. 

• It has unity dc gain, i.e.
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Example: realizing 

Let,  

• Zero-phase feedforward:

• Zero-phase  transfer function:
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Sinusoidal zero-phase error tracking
If yd(k) is a sinusoidal, there will be no phase shift 

between yd(k) and y(k)
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Zero-phase error feedforward
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Zero-phase error feedforward

Closed-loop dynamics:


