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ME 233 Advanced Control II

Lecture 13

Frequency-Shaped

Linear Quadratic Regulator 

(ME233 Class Notes pp.FSLQ1-FSLQ5)
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Outline

• Parseval’s theorem

• Frequency-shaped LQR

– Implementation

• Frequency-shaped LQR with reference input
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Infinite-Horizon LQR (review) 

nth order  LTI system:

Find the optimal control:

which minimizes the cost functional:
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Parseval’s theorem

• Let f(k) be a map from the integers to

• Its (symmetric) Fourier transform is defined by 

and

Rn
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Parseval’s theorem

(complex conjugate transpose)

where
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Proof:
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Frequency Cost Function

By Parseval’s theorem, the cost function:

is equivalent to the cost function 

with



8

Frequency-Shaped Cost Function

Key idea: Make matrices  Q and R

functions of frequency

where
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Frequency-Shaped Cost Function

Define the state and input filters 

state filter

input filter
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Frequency-Shaped Cost Function

can be written
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Realizing the filters using LTI’s

be realized by

so that

is causal or strictly causal.

Let
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Realizing the filters using LTI’s

be realized by

(with                     ) so that

is causal (but not strictly causal)

Let



Example: Hard Disk Drive

Consider a simplified model of a voice coil motor and suspension

(from control input u(k) to read/write head position y(k))
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uncertainty

nominal model

actual plant

high-frequency resonance

modes are neglected in the

nominal model



Example: Frequency State Weight Q(jω)
14

we want zero steady state (i.e. dc) 

error under a step input 

set position cost function weight

to go to ∞ as ω → 0
Example

Set weight on                    to  



Example: Frequency State Weight Q(jω)
15

we want zero steady state (i.e. dc) 

error under a step input 

set position cost function weight

to go to ∞ as ω → 0
Example



Example: Frequency State Weight Q(jω)
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Example

state space realization

state space realization
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Example: Hard Disk Drive

Apply control design 

to nominal model

Weights:

Sufficient condition for robustness

(by small gain theorem) :

FS-LQR is a dynamic

state feedback

-
+

0
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Example: Hard Disk Drive

Weights:

sufficient condition for robustness

(by small gain theorem) :

potential

lack of robustness

-+

0
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Example: Frequency Control Weight R(jω)

increase control penalty 

at high-frequencies

Example



20

Example: Frequency Control Weight R(jω)

Example

Discretize

using ZOH
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Example: Frequency Control Weight R(jω)

Example

Robustness condition 

is satisfied

-+

0
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Cost Function Realization
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Cost Function Realization

where

state space realization state space realization
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Cost Function Realization

Plus:

define extended state
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Cost Function Realization

We can combine state equations and output as follows:
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Extended System Dynamics
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Extended System Cost

Using

the cost can be expressed
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FSLQR problem statement

Minimize

Subject to

This is a standard LQR problem!



for which                        is Schur

FSLQR solution
29

where P is the solution of the DARE

The optimal control law is



FSLQR existence
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The optimal control law exists if

• (Ae, Be) stabilizable

• The state-space realization Ce(zI-Ae)
-1Be + De

has no transmission zeros on the unit circle



Sufficient conditions for FSLQR

The optimal control law exists if the following hold:

1. (A,B) is stabilizable

2. Qf and Rf are stable (i.e. A1 and A2 are Schur) 

3. whenever 

4. whenever 
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(You will be asked to show this for homework)



Remarks on existence conditions

Condition 3 from the existence conditions:

whenever 

is equivalent to the condition that 

The state space realization for Rf has no transmission 

zeros on the unit circle

(This is because                    )
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Remarks on existence conditions

Condition 4 from the existence conditions

whenever 

is a stronger version of the condition that 

None of the unit circle eigenvalues of A are 

transmission zeros of the state space realization for Qf

(The latter is not enough for FSLQR existence)
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Implementation

• Control
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Block Diagram

+

+

+

+

-

0
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Equivalent Block Diagram

-
+

0



State-space realization for K(z)
37
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FSLQR with reference input

• Assume that we want to design a FSLQR that 

will achieve asymptotic output convergence to  

a reference input

• For simplicity, we will assume a scalar output
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FSLQR with reference input

• Assume that the  reference input R satisfies

where has its zeros on the unit circle

-
+

-
+

0R
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Reference input examples

a) Constant disturbance:

Then,

b) Sinusoidal reference of known frequency:

Then,
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Reference input examples

c) Periodic reference of known period

Then,

In all of these three examples, the polynomial                                     

has its zeros on the unit circle.
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FSLQR with reference input

• Define the reference frequency weight

where

This is determined by 

the reference we are 

trying to follow

We can choose this

0R
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Frequency-Shaped Cost Function

• with

used for achieving

(we will show why later)
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Frequency-Shaped Cost Function

Define the state, input, and output filters 

state filter

input filter

output filter
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Frequency-Shaped Cost Function

can be written
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Realizing the filters using LTI’s

be realized by

so that

is causal or strictly causal.

Let
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Realizing the filters using LTI’s

be realized by

(with                     ) so that

is causal (but not strictly causal)

Let
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Realizing the filters using LTI’s

be realized by

so that

is causal or strictly causal.

Let
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Cost Function Realization

where,

Using Parseval’s theorem,
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Extended System Dynamics
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Extended System Cost

Using

the cost can be expressed
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FSLQR with reference input

Minimize

Subject to

This is a standard LQR problem!



for which                        is Schur

Solution
53

where P is the solution of the DARE

The optimal control law is



Existence
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The optimal control law exists if

• (Ae, Be) stabilizable

• The state-space realization Ce(zI-Ae)
-1Be + De

has no transmission zeros on the unit circle



Sufficient conditions for FSLQR

The optimal control law exists if the following hold:

1. (A,B) is stabilizable

2. Qf and Rf are stable (i.e. A1 and A2 are Schur) 

3. whenever 

4. whenever 
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Sufficient conditions for FSLQR

The optimal control law exists if the following hold:

5. (Ar,Br) is stabilizable

6. (Cr,Ar) has no unobservable modes on the unit circle

7. whenever 
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Remarks on existence conditions

• Conditions 1-4 are the same as for the FSLQR 

without a reference input

• Conditions 5-6 are met if the realization of Qr is 

minimal

• Condition 7 is a stronger version of the condition 

that none of the unit circle or unstable eigenvalues

of Ar are transmission zeros of C(zI-A)-1B, the open-

loop relationship between u and y

– The condition here is not enough to guarantee 

FSLQR existence for reference tracking
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Implementation

• Control



59

Block Diagram

+

+

+

+

+

+

+-

-

-
-

+
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FSLQR with reference input – Block Diagram

+ +

- -

+

-

where

SISO
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FSLQR with reference input – Block Diagram

-
+

YER

The closed-loop dynamics from R to E will be

ER 0 = 0

stable



Course Outline

• Unit 0: Probability

• Unit 1: State-space control,estimation

• Unit 2: Input/output control

• Unit 3: Adaptive control
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Finished



What we covered in Unit 1

Finite-horizon results

• Kalman filter

• Optimal LQR

• Optimal LQG 

– state feedback

– output feedback

Infinite-horizon results

• Optimal LQR

• Kalman filter

• Optimal LQG

– output feedback

• Frequency-shaped LQR
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What we are skipping in Unit 1

• Continuous-time versions of:

– Kalman filter

– Optimal LQG

– Frequency-shaped LQR

• Loop transfer recovery

Slides will be posted for reference
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What we will cover in Unit 2

A collection of SISO input/output control design 

techniques

• Disturbance observer

• Pole placement, disturbance rejection, and 

tracking control

• Repetitive control and the internal model 

principle

• Minimum variance regulators
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