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ME 233 Advanced Control II

Lecture 11

Kalman Filters Stationary Properties

and

LQR-KF Duality

(ME233 Class Notes pp.KF1-KF6)
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Summary

• Stationary Kalman filters (KF):

– KF algebraic Riccati equation

– Convergence properties

• Kalman filter / LQR duality

• KF return difference equality

– Reciprocal root locus

– Guaranteed robustness margins
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Stochastic State Estimation
Linear  system contaminated by noise:

YX
(zI-A )-1 CB

+ +U

W

VBw

Two random disturbances:

• Input noise w(k) - contaminates the state x(k) 

• Measurement  noise v(k) - contaminates the 

output y(k) 
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Stochastic state model

State estimation of LTI system:

Where:

• known control input

• Gaussian, uncorrelated, zero mean, input   noise

• Gaussian, uncorrelated, zero mean, meas. noise

• Gaussian
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Assumptions (review)

• Initial conditions:

• Noise properties:

Zero-mean

Gaussian

uncorrelated 

noises
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Kalman Filter Solution V-1 (review)

A-posteriori state observer structure:
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Kalman Filter Solution V-1 (review)

• A-posteriori estimator as output
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Kalman Filter Solution V-2 (review)

A-priori state observer structure:
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U

YX
(zI-A )

-1 CB

YX
(zI-A )

-1 CB

+ -

L
 +

-

Kalman Filter Solution V-2 (review)

• Same structure as deterministic a-priori 

observer
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Kalman Filter State Space (review)
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Kalman Filter (KF) Properties 

(review) 
The KF a-priori output error (a-priori output residual)

is often called the innovation

it contains only the “new information” in y(k)

Moreover,

i.e.                is an uncorrelated RVS
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KF as an innovations filter (review)

For the figure on the next slide, we will assume without 

loss of generality that the control input is zero, i.e.

• Plant:

• Kalman filter V-2:
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KF as an innovations filter (review)

W(z) Y(z)
+

C B
w (z)

-

+

L

Y  (z)
o

Y  (z)
ô

~

C (z)

Uncorrelated 

noise input Correlated 

noise output

Uncorrelated

noise output

plant

Kalman filter
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Kalman Filter (KF) Properties 

(review) 
• The KF is a linear time varying estimator.

• The KF is the optimal state estimator when 

the input and measurement noises are 

Gaussian.

• The KF is still the optimal linear state

estimator even when the input and 

measurement noises are not Gaussian.

• The KF covariance Riccati equation is 

iterated in a forward manner, rather than in a 

backwards manner as in the LQR. 
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Steady State Kalman Filter

• Assume now that we want to estimate the 

state under zero-mean, stationary input and 

output Gaussian white noise, I.e.

WSS

Gaussian

Noise
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A priori estimation error dynamics

Proof:

Subtracting equations gives



1) When does there exist a BOUNDED limiting solution

to the Riccati Eq. 

for each choice of                             ?
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Steady state Kalman filter, question 1



2) When does there exist a UNIQUE limiting solution

to the Riccati Eq. 

regardless of the choice of                           ?
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Steady state Kalman filter, question 2



3) When does the limiting solution

to the Riccati Eq. 

yield asymptotically stable estimation error dynamics?
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Steady state Kalman filter, question 3

is Schur

(all eigenvalues inside unit circle)



Detectability Assumption

We are only interested in the case where the 

estimation error dynamics are asymptotically 

stable

If (C,A) is not detectable, then there does not 

exist a estimator that results is asymptotically 

stable estimation error dynamics

For the stationary Kalman filter, we always 

assume that (C,A) is detectable

20
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Theorem 1 : Existence of a bounded M∞

Let                      be detectable
(unobservable modes are asymptotically stable)

Then, for                                 ,   as 

the solution of the Riccati Eq.

converges to a BOUNDED limiting solution  M∞
that satisfies the algebraic Riccati equation (DARE):
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Theorem 1 : Notes

• Theorem 1 only guarantees the existence of 

a bounded solution M∞  to the algebraic 

Riccati Equation

• The solution may not be unique.

• Different initial conditions                         

may result in different limiting solutions  M∞ 

or may yield no limiting solution at all!
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Theorem 2 : Existence and uniqueness of a positive 

definite asymptotic stabilizing solution

If (C,A) is detectable and (A,BwW1/2) is controllable

1) There exists a unique, bounded  

solution                to the DARE 

2) The estimation error dynamics are 

asymptotically stable
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If (C,A) is detectable and (A,BwW1/2) is stabilizable

Theorem 3 : Existence of a stabilizing solution

1) There exists a unique, bounded  

solution                to the DARE 

2) The estimation error dynamics are 

asymptotically stable



Theorem 4: A different approach

The discrete algebraic Riccati equation (DARE) has a 

solution for which                     is Schur

if and only if

is detectable and the matrix pair                         

has no uncontrollable modes on the unit circle.

25
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Kalman Filter Solution V-1

A-posteriori state observer structure:

is Schur
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Kalman Filter Solution V-2

A-priori state observer structure:

is Schur
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Kalman Filter State Space

is Schur
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Kalman Filter (KF) Properties

The KF a-priori output error (a-priori output residual)

is often called the innovation

it contains only the “new information” in y(k)

Moreover,

i.e.                is white
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KF as an innovations filter

For the figure on the next slide, we will assume without 

loss of generality that the control input is zero, i.e.

• Plant:

• Kalman filter V-2:
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KF as an innovations (whitening) filter

W(z) Y(z)
+

C B
w (z)

-

+

L

Y  (z)
o

Y  (z)
ô

~

C (z)

White

noise input Colored

noise output

White

noise output

plant

Kalman filter
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Output Y(k) is colored noise

• Plant:

B

W(z)

(zI - A)
-1

C

X(z) Y(z)

w

+
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Output Y(k) is colored noise

• Plant:

W(z) Y(z)
+

C B
w (z)
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KF as an innovations filter

• A-priori KF:

-

+

C (zI - A)
-1

L

X (z)
o

Y(z)

^

Y  (z)
o

Y  (z)
ô

~
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KF as an innovations filter

• A-priori KF:

-

+

L

Y(z) Y  (z)
o

Y  (z)
ô

~

C (z)
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KF as an innovations filter

• Plant

• A-priori KF:

W(z) Y(z)
+

C B
w (z)

-

+

L

Y  (z)
o

Y  (z)
ô

~

C (z)
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Y(k) Power spectrum 
Power spectrum  of

W(z) Y(z)+

C B
w(z)

Y  (z)
w

w(k) and v(k) are uncorrelated! 
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Y(k) Power spectrum 
Power spectrum  of

W(z) Y(z)+

C B
w(z)

Y  (z)
w

yw(k) and v(k) are also uncorrelated! 
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Y(k) Power spectrum 
Power spectrum  of

W(z) Y(z)+

C B
w(z)

Y  (z)
w
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Y(k) Power spectrum 
Power spectrum  of

W(z) Y(z)+

C B
w(z)

Y  (z)
w

v(k) is white noise
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Y(k) Power spectrum 

G(k)
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Y(k) Power spectrum 
Power spectrum  of

W(z) Y(z)+

C B
w(z)

Y  (z)
w

w(k) is white noise
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Y(k) Power spectrum 
Power spectrum  of

W(z) Y(z)+

C B
w(z)

Y  (z)
w
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KF as an innovations filter
Power spectrum  of

-

+

L

Y(z) Y  (z)
o

Y  (z)
ô

~

C (z)
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KF as an innovations filter
Combining two results:

and

W(z) Y(z)
+

C B
w (z)

-

+

L

Y  (z)
o

Y  (z)
ô

~

C (z)
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KF as an innovations filter
Combining two results:

W(z) Y(z)
+

C B
w (z)

-

+

L

Y  (z)
o

Y  (z)
ô

~

C (z)
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KF as an innovations filter

Recall what Theorem part 3) says about the a-priori 

output error (the innovation sequence)

is also white noise!!
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KF as an innovations filter

Recall what Theorem part 3) says about the a-priori 

output error (the innovation sequence)
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KF as a innovations (whitening) filter

•

W(z) Y(z)
+

C B
w (z)

-

+

L

Y  (z)
o

Y  (z)
ô

~

C (z)

plant

Kalman filter

whitening filter



50

KF as an innovations filter

W(z) Y(z)
+

C B
w (z)

-

+

L

Y  (z)
o

Y  (z)
ô

~

C (z)

therefore,
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KF return difference equality
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Kalman Filter & LQR Duality

Recall Steady state LQR:
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Note:
We need to distinguish between:

• LQR: state cost weight

• KF: output matrix
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Kalman Filter & LQR Duality

Infinite-horizon LQR  Closed-loop dynamics:
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Kalman Filter & LQR Duality

Steady State KF Estimation error dynamics
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Kalman Filter & LQR Duality

Let’s compare  the DAREs:

LQR

KF
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Kalman Filter & LQR Duality

Let’s compare  the AREs:

LQR

KF
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Kalman Filter & LQR Duality

Let’s compare  the AREs:

LQR

KF
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Kalman Filter & LQR Duality

Let’s compare  the AREs:

LQR

KF
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Kalman Filter & LQR Duality

Let’s compare  the AREs:

LQR

KF
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Kalman Filter & LQR Duality

Let’s compare  the Feedback gains:

LQR

KF



62

Kalman Filter & LQR Duality

Let’s compare  the Feedback gains:

LQR

KF
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Kalman Filter & LQR Duality
Comparing ARE’s and feedback gains, we obtain the following 

duality

LQR KF

P M

A AT

B CT

R V

CQ
T B’w  = BwW 1/2

K LT

(A-BK) (A-LC)T

duality
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Kalman Filter & LQR Duality

LQR KF

P M

A AT

B CT

R V

CQ
T B’w = BwW 1/2

K LT

(A-BK) (A-LC)T

duality
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Kalman Filter & LQR Duality

LQR KF

P M

A AT

B CT

R V

CQ
T B’w = BwW 1/2

K LT

(A-BK) (A-LC)T

duality



Kalman Filter & LQR Duality

• It is possible to use duality to prove     

theorems 1-4 for stationary Kalman filters 

from the corresponding theorems from the 

infinite horizon LQR

• The following slides give an outline of how to 

do this

• The main idea is to design an infinite horizon 

LQR for a fictitious system
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Theorems 1-4 proof methodology

• Consider the LQR problem:

• Solution:

67



Theorems 1-4 proof methodology

• The solution of the Riccati equation

is

• Use LQR convergence results for            as       

to yield convergence results for       

as 
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Theorems 1-4 proof methodology

• Other key ideas in proofs

– (AT,CT) stabilizable iff (C,A) detectable

– Unobservable modes of ((BwW1/2)T, AT) are 

the uncontrollable modes of (A, BwW1/2)

– AT-CTLT is Schur iff A-LC is Schur

69
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Steady State LQR

Theorem 1):

If the pair  [A, B] is controllable (or stabilizable), the 

solution of the DRE

converges, as                 ,  to a constant that satisfies

with
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Then [A,B] is controllable (or stabilizable) if and only if:

Steady State LQR
Theorem 2:

If  the pair  [ A, Cq ] is observable (or detectable)

1) The solution of 

Converges to a unique stationary solution P, which satisfies

with
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2) P is positive definite (semi-definite)

Steady State LQ
Theorem 2: (continuation)

3) The close loop matrix 

is Schur
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Kalman Filter & LQR Duality

LQR KF

P M

A AT

B CT

R V

CQ
T B’w = BwW 1/2

K LT

(A-BK) (A-LC)T

duality
LQR KF

KF
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Kalman Filter & LQR Duality

LQR KF

P M

A AT

B CT

R V

CQ
T B’w = BwW 1/2

K LT

(A-BK) (A-LC)T

duality

KFLQR

KF
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Steady State Kalman Filter

Theorem 1:

If the pair  [A,C] is observable (or detectable):

the solution of 

Converges to a stationary solution, M, which satisfies

with
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Then [A,C] is observable (or detectable) if and only if:

Steady State Kalman Filter
Theorem 2:

If  the pair  [ A, B’w ] is controllable (or stabilizable), where

1) The solution of 

Converges to a unique stationary solution M, which satisfies
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2) M is positive definite (semi-definite)

Steady State Kalman Filter
Theorem 2: (continuation)

3) The close loop matrix 

is Schur
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Steady State Kalman Filter

Theorem 3:

Under stationary noise and the conditions in 

theorems 1) and 2),

The observer a-priori residual (innovations)

is  white  
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KF as an innovations filter

We will assume, without loss of generality that the control 

input is zero, I.e.

•Plant:
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KF as an innovations (whitening) filter

•

W(z) Y(z)
+

C B
w (z)

-

+

L

Y  (z)
o

Y  (z)
ô

~

C (z)

White noise

input Colored noise

output

White noise

output

plant

Kalman filter
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KF as a innovations (whitening) filter

•

W(z) Y(z)
+

C B
w (z)

-

+

L

Y  (z)
o

Y  (z)
ô

~

C (z)

White noise

input Colored noise

output

White noise

output

plant

Kalman filter
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Return difference equality for LQR 

(review)

Open loop transfer function: TF from U(z) to YQ(z):

-

+
B

U(z)

(zI - A)
-1

K
X(z)

C
Y  (z)

Q

Q
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Return difference equality for LQR 

(review)
Substituting,

into

We obtain,
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Kalman Filter & LQR Duality

LQR KF

P M

A AT

B CT

LQR KF

R V

CQ
T B’w = BwW 1/2

K LT
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KF return difference equality
From,

we perform transpose operations and notice that:

This gives the desired result:
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Kalman filter closed-loop eigenvalues

• A-priori KF (for u(k) = 0)

-

+

L

Y(z) Y  (z)
o

Y  (z)
ô

~

C (z)
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Kalman filter closed-loop eigenvalues

•KF closed-loop eigenvalues
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Kalman filter return difference

-

+

L

Y(z) Y  (z)
o

Y  (z)
ô

~

C (z)

Return difference:



• Similar to the LQR case, we have that
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Kalman filter return difference

• KF closed-loop eigenvalues

• KF open-loop eigenvalues
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KF return difference equality

W(z) Y(z)
+

C B
w (z)

-

+

L

Y  (z)
o

Y  (z)
ô

~

C (z)
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KF return difference equality (SISO)

W(z) Y(z)
+

C B
w (z)

-

+

L

Y  (z)
o

Y  (z)
ô

~

C (z)

Assume that both, 
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KF root locus for SISO Systems

W(z) Y(z)
+

C B
w (z)

-

+

L

Y  (z)
o

Y  (z)
ô

~

C (z)

c.l. poles

o.l. poles

o.l. zeros

o.l. poles
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KF root locus for SISO Systems

input noise intensity

measurement noise intensity
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KF Loop phase margins (SISO)

-

+

L

Y(z) Y  (z)
o

Y  (z)
ô

~

C (z)

Utilizing LQR-KF duality,

Therefore, a lower bound to the phase margin

of                is:
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KF Loop gain margins (SISO)

-

+

L

Y(z) Y  (z)
o

Y  (z)
ô

~

C (z)

Estimator was designed for 

Estimator  is guaranteed to remain asymptotically stable for    
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Summary

• Stationary Kalman filters (KF):

– KF algebraic Riccati equation

– Convergence properties

• Kalman filter / LQR duality

• KF return difference equality

– Reciprocal root locus

– Guaranteed robustness margins


