ME 233 Advanced Control |l

Lecture 11
Kalman Filters Stationary Properties
and
LOR-KF Duality

(ME233 Class Notes pp.KF1-KF6)



Summary

« Stationary Kalman filters (KF):
— KF algebraic Riccati equation
— Convergence properties

« Kalman filter/ LOQR duality

« KF return difference equality
— Reciprocal root locus
— Guaranteed robustness margins



Stochastic State Estimation
Linear system contaminated by noise:

B @
+
U X + Y

—| B —>O—> (ZI—A)'Z »| —>O—>

Two random disturbances:

* Input noise w(k) - contaminates the state x(k)

- Measurement noise v(k) - contaminates the
output y(k)



Stochastic state model
State estimation of LTI system:

x(k+1)

y(k)

Ax(k) + Bu(k) + By w(k)

Cz(k) + v(k)

Where:
u(k) known control input
’w(k) Gaussian, uncorrelated, zero mean, input noise

fu(k) Gaussian, uncorrelated, zero mean, meas. noise

x(0) Gaussian



Assumptions (review)

Initial conditions:

E{z(0)} = zo E{3°(0)i° (0)} = X,

Noise properties:
E{w(k)} =0
E{v(k)} =0
E{w(k + Dw! ()} = W (k) sQ1)

E{v(k+ Dol (k)} =V (k) ()
E{w(k+ Dvl(k)} =0

E{z°(0)w! ()} =0

\

~/

Zero-mean
Gaussian
uncorrelated
noises

E{z°(0)v!(k)} =0



Kalman Filter Solution V-1 (review)
A-posteriori state observer structure:

z(k) = z29(k) + F(k)y°(k)
2k+1) = Az(k) + Bu(k)

g’ (k) = y(k) — Cz°(k)

F(k) = M®CT [CME)CT + V()|
M(k+1) = AM(kK)A" + ByW (k)BL

— AM(R)CT [CM()CT + V(K)| T CM(k)AT




Kalman Filter Solution V-1 (review)

* A-posteriori estimator as output
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Kalman Filter Solution V-2 (review)
A-priori state observer structure:

°(k+1) = Az°%k)+ Bu(k) + L(k)5°(k)

y'(k) = y(k) — Cz°(k)

L(k) = AMK)CT [CME)CT +V (k)|
M(k+1) = AM(k)A! 4+ ByW (k)BL

— AM(R)CT [CM(R)CT 4+ V(k)| T OM (k) AT
M) = X,




Kalman Filter Solution V-2 (review)

« Same structure as deterministic a-priori
observer

X Y
—| B > (ZI—A)I » () >
vl Y O+y
| L(k)fe—0
| + ¥ - X0 E?O
—>| B —(O— (zIA)Z > C —
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Kalman Filter State Space (review)

2°(k+1) = [A - L(K)C12°(k) + |B L(k)] ng}

#(k) = [I - F())C13°(k) 4 [0 F (k)| ng}

F(k) = ME)CT [ MECT + V()]

L(k) = AM((k)CT [CM(k)OT+V(k)]_1

M(k+1) = AM(kK)A" + ByW (k)BL

— AM(R)CT [CM()CT + V(K)| T CM(k)AT
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Kalman Filter (KF) Properties
(review)
The KF a-priori output error (a-priori output residual)

y'(k) = y(k) — Cz°(k)

IS often called the innovation

it contains only the “new information” in y(k)

Moreover,

Asoro(k,§) = [CM(K)CT 4+ V (K)]5(5)

l.e. go(k) IS an uncorrelated RVS
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KF as an innovations filter (review)

For the figure on the next slide, we will assume without
loss of generality that the control input is zero, i.e.

u(k) =0 k=0,1,--

* Plant:

x(k+1)

y(k)
 Kalman filter V-2:

2°(k+ 1) = Az°(k) + L(k)y°(k)
yo(k) = Cz(k)

Ax(k) + By w(k)

Cx(k) + v(k)
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KF as an innovations filter (review)
d(z) = (2] — A1

@ plant /.\ /\

\ Kalman filter | _
We) T YE)l Y'()

—T C(D(Z)Bw —>Q tO
o

‘ " copr
\J y )

Uncorrelated
noise input Correlated
[V(k) 0 ] noise output
0 W(k)

Uncorrelated
noise output

CM(E)CT +V (k)



Kalman Filter (KF) Properties
(review)
'he KF Is a linear time varying estimator.
'he KF is the optimal state estimator when

the input and measurement noises are
Gaussian.

The KF is still the optimal linear state
estimator even when the input and
measurement noises are not Gaussian.

The KF covariance Riccati equation Is
iterated in a forward manner, rather thanin a
backwards manner as in the LOR.

14



Steady State Kalman Filter

« Assume now that we want to estimate the
state under zero-mean, stationary input and
output Gaussian white noise, l.e.

x(k+ 1) = Ax(k) + Bu(k) + Byw(k)
y(k) = Cz(k) + v(k)

E{w(k)} =0
E{w(k + Dw! (k)} = W) Gaussian
E{v(k 4+ Dol (k)} =V Q) Noise

E{w(k+Dvl (k)} =0

15
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A priori estimation error dynamics

2°(k+1) = [A-L(k)C]z?(k)+Bww(k)—L(k)v(k)

Proof:

x(k+ 1) = Ax(k) + Bu(k) + Bypw(k)
{f()(k 1) = A5°k) + Bu(k) + LO)Fo(k)

Subtracting equations gives

2°(k + 1) = Az°(k) + Buww(k) — L(k)y°(k)

7

Czo(k) 4+ v(k) B



Steady state Kalman filter, question 1

1) When does there exist a BOUNDED limiting solution

Mo
to the Riccati Eq.
M(k+1) = AMK)AT + B,wB!
— AM(K)CTICcM(k)CT

for each choice of M(0) = 0 2

vi~lom (k) AT
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Steady state Kalman filter, question 2

2) When does there exist a UNIQUE limiting solution

Moo

to the Riccati Eq.

M(k+1) = AMK)AT + B,wB!
— AMKYCTICcM (k)T + v]~toMm (k) AT

regardless of the choice of M(0) = 0 ?




Steady state Kalman filter, question 3

3) When does the limiting solution

Moo

to the Riccati Eq.

yield asymptotically stable estimation error dynamics?

IS Schur
(all eigenvalues inside unit circle)

AczA—LOOC

L= AM,CT |CM, CT + v}_l

19



Detectability Assumption

We are only interested in the case where the
estimation error dynamics are asymptotically
stable

If (C,A) Is not detectable, then there does not
exist a estimator that results is asymptotically
stable estimation error dynamics

== For the stationary Kalman filter, we always
assume that (C,A) is detectable

20
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Theorem 1 : Existence of a bounded M

Let (C, A) be detectable

(unobservable modes are asymptotically stable)

Then, for M(0) = Xg =0 as k — o0
the solution of the Riccati Eq.

M(k+1) = AMK)AT + B,wB!
— AMKYCT[eM (k)T + v~ tloM (k) AT

converges to a BOUNDED limiting solution W
that satisfies the algebraic Riccati equation (DARE):

M= AM_A" + B,WBl
—AaMm. clicm ct +vi~tcm AT
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Theorem 1 : Notes

Theorem 1 only guarantees the existence of
a bounded solution M, to the algebraic
Riccati Equation

M= AM_A" + B,WBl
—AMm _ctiem ct +v)i~tom A’
The solution may not be unique.

Different initial conditions M (0) = X

may result in different limiting solutions M,
or may yield no limiting solution at all!



Theorem 2 : Existence and unigueness of a positive
definite asymptotic stabilizing solution

If (C,A) is detectable and (A,B,W?) is controllable

1) There exists a unique, bounded
solution M~ > O to the DARE

M, =AM _A" 4+ B,WB!

—AM _ctlicm ct +v]~tom At

2) The estimation error dynamics are

asymptotically stable
°(k+1) =[A—-L_C]z°(k)

Byw(k) — L_v(k)

L., =AM_cticm ct 4 v]—1

23



Theorem 3 : Existence of a stabilizing solution

If (C,A) is detectable and (A,B,,W*?) is stabilizable

1) There exists a unique, bounded
solution Mso ~ O to the DARE

M, =AM _A" 4+ B,WB!

—AMm . clicm _ct +vi—tom At

2) The estimation error dynamics are

asymptotically stable
°(k+1) =[A—-L_C]z°(k)

Byw(k) — L_v(k)

L., =AM_cticm ct 4 v]—1

24



Theorem 4: A different approach

The discrete algebraic Riccati equation (DARE) has a
solution for which A — L.C' is Schur

If and only if

(C, A) is detectable and the matrix pair (4, BuW/?)
has no uncontrollable modes on the unit circle.

L =AM _clticm _ct +v]1

M_ = AM_A" 4+ B,WB!
—AMm _ctiem ct +v)i~tom At

25



Kalman Filter Solution V-1
A-posteriori state observer structure:

26

(k) = z°k) + Fy°(k)
2°(k+1) = Az(k) + Bu(k)

g’ (k) = y(k) — Cz°(k)

F = McT[oMcT +v] ™

M = AMA' 4+ B,WB!
—Amctcmct + vy~ tomAa”

A — AFC is Schur




Kalman Filter Solution V-2
A-priori state observer structure:

27

°(k+1) = Az°(k) + Bu(k) + Ly°(k)

y'(k) = y(k) — Cz°(k)

L = AMCT[cMCT +v] ™

M = AMA' 4+ B,WB!
—Amctcmct + vy~ tomAa”

A — LC s Schur




Kalman Filter State Space

28

7°(k 4+ 1) = [A — LC)2°(k) + [B L} [f;‘g:ﬂ

(k) = [I — FC)z°(k) + [0 F] [Z%Zﬂ

F = McT[cMcT +v]
L = AmMcT [omMcT +v] ™

M = AMA" + B,WBL
—Amctcmct + vy~ toma”

A — LC is Schur
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Kalman Filter (KF) Properties

The KF a-priori output error (a-priori output residual)

y'(k) = y(k) — Cz°(k)

IS often called the innovation

it contains only the “new information” in y(k)

Moreover,

Njogo(7) = [CMC* 4 V]5(5)

ie. Y°(k) iswhite



KF as an innovations filter

For the figure on the next slide, we will assume without
loss of generality that the control input is zero, i.e.

u(k) =0 k=0,1,--

* Plant:

x(k+1)

y(k)
 Kalman filter V-2:

z°(k+ 1) = Az°(k) + Ly°(k)
yo(k) = Cz(k)

Ax(k) + By w(k)

Cx(k) + v(k)

30



KF as an innovations (whitening) filter
d(z) = (2] — A1

@ plant /.\ /\

\ Kalman filter | _
We) T YE)l Y'()

—T C(D(Z)Bw —>Q tO
o

‘ " copr
\J y )

Wr_ute_ : ored White
noise inpu Colore noise output
vV 0 noise output T
0 CMCH +V

31



32

Output Y (k) is colored noise

* Plant:
x(k+1) = Ax(k)+ Byw(k)
y(k) = Cux(k)+ v(k)
V(z)
W(z) X(z) ¥ l Y(2)
—— B | P(2) —— _ .

d(2) = (21 — AL
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Output Y (k) is colored noise

 Plant:
Y(z) = [CP(2)Buw] W(z) + V(z)
d(2) = (21 — AL
V(z)
Wi(z) +l Y(z)

——| CDEB, —()




KF as an innovations filter

* A-priori KF:

2k +1) =

Az°(k) + Ly (k)

y’(k) = y(k) — Cz°(k)

34

Y(z) + Y(2)
—O :
a O
{/\o (2) X ()
C |e—| O(2)le— L |[——

D(2) = (21 — A1




KF as an innovations filter

* A-priori KF:

Vo(2) = [T+ CP(R)L]I 1Y (2)

d(2) = (21 — AL

Y(z) + Y(2)

—O

o
y
@l comr |.
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KF as an innovations filter

 Plant Y(2) = [C¢(Z)Bw] W(z) + V(z)
« A-priori KF:

Vo(2) = [I4+CP()L] 1Y ()
V(z)
W) *‘ Y(z)

— cq)(Z)Bw L () —




Y(k) Power spectrum

Power spectrum of y(k)

Y(z) =[CP(z)By| W(z)+ V(z
()\[ (2) Buw] (b (2)

Y
Yuw(2)

Y (Z) +l Y(z)
CDEB, a -()——

t w(k) and v(K) are uncorrelated!

DO

37
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Y(k) Power spectrum

Power spectrum of (k)

Y(z) = |CP(z)By z z
(2) \[¢()B]W(5+V()
Y

©
W) ‘ Yi2)
——| COEB, (O)——

t v,,(k) and v(K) are also uncorrelated!
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Y(k) Power spectrum

Power spectrum of y(k)

Y(z) =[CP(z)By| W(z)+ V(z
()\[ (2) Buw] ()j (2)

Y
Y.
V(z) v (Z>
W(z) Y (2) + l Y(z)
—| CDRB, T

/\yy(z) — /\ywyw(z) + Awo(2)



Y(k) Power spectrum

Power spectrum of y(k)

V(z)
W(z) Yw(z) +l Y(z)
—| (D(Z)Bw >

Nyy(2) = Nypyw (2) + Nov(2)

&

v

V(K) is white noise :ﬁ

40



Y(k) Power spectrum

w(k) yuw (k)
-

Ny (2) = G(2) Aww(2) G* (z71)

41



Y(k) Power spectrum

Power spectrum of (k)
V(z)

W(z) Yw(z) +l Y(z)
- G( z) .Q

Y

Nyuye(2) = [CP(2) Bu] W |[CP (2 1) By
\_'_I

w(K) is white noise :ﬁ

}T

42
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Y(k) Power spectrum

Power spectrum of (k)
V(z)

W(z) Yw(z) +l Y(z)
— C(D(Z)Bw >

T

Ayy(z) =V 4 [CP(2)By] W [ch(z—l)Bw}
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KF as an innovations filter

Power spectrum of §°(k)
Yz) + Y2)

. A,
Y
‘l COEL |e— 1|

Vo(2) = [T+ Co(R)L] Y (2)

Njogo(2) = [T+ CO()L) ™ Ay (2) [T+ Cd(="HE|

Ayy(2) = [I + CD(2)L] Agogo(2) [T + Cd(z D]



V(z)

45

KF as an innovations filter
Combining two results:

W)

_—

Ayy(2) =V + [CP(2)Bw] W [ch(z—l)Bw

!

Ayy(2) = [I + CP(2)L] Agogo(2) [I + ooz HL

C (D(Z)Bw

* \ Y(z)

}T
and

}T



KF as an innovations filter
Combining two results:

V(z)

W(z) + l Y2) + Y ()

CD:L

[ 4 CP()L] Ajogo(2) [T + Cp(zDL]

V 4+ [C®(2)Bu] W [CO(=1)Bu|




KF as an innovations filter

Recall what Theorem part 3) says about the a-priori
output error (the innovation sequence)

Ngogo(D) = E{5°(k + D7 (k) }

= |[cMCT + V]

7°(k) is also white noisel! :ﬁ

47



KF as an innovations filter

Recall what Theorem part 3) says about the a-priori
output error (the innovation sequence)

Npogo(1) = |CMCT +V|s(1)
/\gogo(z) — {C MCT ‘|‘ V]
Cbgogo(w) — {C MCT ‘|‘ V}

48
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KF as a innovations (whitening) filter

V(z)

plant

W)

Kalman filter

C (I)(Z)Bw

+ l Ye) + Y (2

—( | —

‘ l//\o(z)

- J
Y

whitening filter

COPGL |e—0—707 —




KF as an innovations filter

V(z)

W(z) * l Y(2) +

)

——| cOEB, —(O——O

/\gogo(z) — {C MCT T V]

therefore, \

[[ 4+ CP(2)L] [O mcT + v} [1 + oz L

:/\gogo (Z)

V + [C®(2)By] W [CD(z7 ) By

ChpL

}T

T

7

=Ayy(z)



KF return difference equality

o1

I+ Cd(2)L] |CMCT + V| [T+ ch(z—l)L]T

V 4+ [CD(2)Bw] W [ch(z—l)Bw

]T




Kalman Filter & LQR Duality
Recall Steady state LOR:

x(k+1) = Ax(k)+ Bu(k)
u(k) = —K z(k) + r(k)

0@

=3 {xT (k) cg’ Cpy z(k) + ul (k) Ru(k)}
k=0

Q=0C,Ch>0 R=R!'>0

52



Note:

We need to distinguish between:

o : i _ T
LQR: state cost weight @ = C,Cq 20

oo

= > {27 (k) CL Cya(k) + u” (k) Ru(k)]
k=0

« KF: output matrix C

x(k+ 1)

y(k)

Ax(k) + Bu(k) + By w(k)

Cz(k) + v(k)

53



Kalman Filter & LQR Duality

Infinite-horizon LOR Closed-loop dynamics:

x(k+1) = (A—-BK)z(k)+ Br(k)

K = [R BTPB}_1 BTpA

T _ T
ATpa-P = -Clc,

+ ATpRB [BTPB + R} 1 pTpa

o4
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Kalman Filter & LQR Duality

Steady State KF Estimation error dynamics

F(k+1) = (A—LC)#°(k) + By w(k) — Lo(k)

L

AmcT [ome” +v]

AMAY - M = —-B,WB.

+AMCT [eMCT + V] M AT
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Kalman Filter & LQR Duality
Let’s compare the DAREs:

T _ T LOR
—1
1+ ATpRB [BTPB i R} BT pA

b |
AMAT - M = —Bu,2WBT
A 4 A 4 i

—1
+ Aamct lemeT + v} CMAT

P = M




Kalman Filter & LQR Duality
Let’s compare the AREs:

T _ T LOR
ATPA-P = (%%

+ ATpRB [BTPB + R} 1 pTpa

AMAT — —BwWD

+ AmcT CMCT 4 v} ' om AT
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Kalman Filter & LQR Duality
Let’s compare the AREs:

T _ T
ATpA-P = -Clc,

|

AMAT — M

LOR

+ ATpRB [BTPB + R} 1 pTpa

|

= 1 B,WBIL
!

\

+AMCT [eMCT + V] M AT

A = Al
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Kalman Filter & LQR Duality
Let’s compare the AREs:

T _ AT LQR
Alpa-pP = -c/c,

—1
1+ ATpRB [BTPB i R} BT pA
| |

AMAT — M = —waé‘
| .
+ AmcT CMCT 4 v} ' om AT

B = ¢!
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Kalman Filter & LQR Duality
Let’s compare the AREs:

T _ T LOR
ATpa-pP = —Clc,
—1
1+ ATpRB [BTPB i R} BTpA
|
AMAT - M = —BuWBT |

—1
+ Aamct lemeT + v} cMAT

R =V
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Kalman Filter & LQR Duality

Let’s compare the Feedback gains:

K = R—I—BTPB}_lBTPA LQR
boobndl b
"' =|v4+comct| ~omAT



Kalman Filter & LQR Duality

Let’s compare the Feedback gains:

K" = APB [R+ BTPB| " LQR
L = AMCT[V+CMCT}_1

KT:>L

62



Kalman Filter & LQR Duality

Comparing ARE’s and feedback gains, we obtain the following
duality

duality>

LOR KF

P M

A AT

B CT

R %4

CQT B’ =B,W 1/2

K LT
(A-BK) (A-LC)T




Kalman Filter & LQR Duality

duality>

LOR KF
[P\ [ M\
4 A

B CT

R v
O CT \ B,=B,W1? |
\_ K ] \_ ]
\ @-BK) / (A-LC)T

N

—1
ATPA-P+ Clcy —A"PB|B"PB+R| " B'PA=0

~1
AMAT — M + B, BF — AMCT [cMCT +v] " cMAT =0



Kalman Filter & LQR Duality

duality>

LOR KF
[ P\ [ M\
[ a ) [ ar )

B cr

R v
Gt \ B,,=B,W!? |
\ &k \ o/
\ @Bk / (A-LC)T

N N
K = |BTPB 1+ R] BT pA

- —1
L' = lcmet & v} CMAT



Kalman Filter & LQR Duality

 |tis possible to use duality to prove
theorems 1-4 for stationary Kalman filters
from the corresponding theorems from the
Infinite horizon LQR

« The following slides give an outline of how to
do this

 The main idea is to design an infinite horizon
LOR for a fictitious system
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Theorems 1-4 proof methodology

« Consider the LQR problem:
(k+1) = ATZ(k) + cTa(k)
N—-1

J=zl(N)Xgz(N) + ¥ {:ET(k) BuWBL (k) + a” (k) Va(k)}
k=0

« Solution:

a(k) = —[CP(k+1)CT+ V] 1cP(k+1)ATZ(k)

P(k—1) = AP(k)A" + B,WB!
— AP cP(k)CcT 4+ v~ teP(k) AT

P(N) = Xo = M(0)



Theorems 1-4 proof methodology

* The solution of the Riccati equation

P(k—1) = AP(k)A" + B,WB!
— AP IcP(k)CT 4+ v~ teP(k) AT
P(N) = Xg = M(0)

s P(N —k) = M(k)

 Use LQR convergence results for P(0) as

N — oo to yield convergence results for M (N)
as N — oo

68



Theorems 1-4 proof methodology

* Other key ideas in proofs
— (AT,CT) stabilizable iff (C,A) detectable

— Unobservable modes of ((B,W"?)T, AT) are
the uncontrollable modes of (A, B, WY?)

— AT-C'LT is Schur iff A-LC is Schur

69



Steady State LOR

Theorem 1):

If the pair [A, B] is controllable (or stabilizable), the

solution of the DRE

—P(k) = ATP(k+1)A+ CgCQ

—ATp(k+1)B [BTP(k +1)B+ R:

wit

' BTP(k+1)A

N P(N)=0

converges,as N — oo , to a constant that satisfies

P = Alpa CgCQ—ATPB BT PR

—1
R| " Blpa

70



Steady State LOR

Theorem 2:
If the pair [ A, C,] is observable (or detectable)

Then [A,B] is controllable (or stabilizable) if and only if:

1) The solution of
—P(k) = ATP(k+ 1A+ CgCQ
~ATp(k+ 1B [BTP(k +1)B+ R} ' BTP(k+1)A
with P(N) =0

Converges to a unigque stationary solution P, which satisfies

—1
P = ATpa CgCQ—ATPB [BTPB R} BTpA

71



Steady State LQ

Theorem 2: (continuation)
2) P is positive definite (semi-definite)

3) The close loop matrix A, = A — BK
IS Schur

K= [BTPB + R} ' BTpa

72
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Kalman Filter & LQR Duality

LQR KF
P M
A | = Al
B | = (T
R V
CoT B,=B, W1/
K LT

(A-BK) (A-LC)T
LOR KF
duality
[A, B] controllable » [AT, CT] controllable

KF  [C, A] observable
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Kalman Filter & LQR Duality

LOR KF
P M
A = A7l
B CT
R v

CoT > B, =B, W12
K LT

(A-BK) (A-LC)T
LOQR KF
duality /
[C,,, A] observable . [B,l', AT] observable

!

<« [A, B,] controllable
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Steady State Kalman Filter

Theorem 1.
If the pair [A,C] is observable (or detectable):
the solution of

M(k+1) = AM(k)A!T + B,WB!L
— AM(R)CT [CM()CT + V] CM (k) AT

with M(0) =0
Converges to a stationary solution, M, which satisfies

—1
M = AMAT + B,2WB,, — AMCT [cMCT + V| T CMAT



Steady State Kalman Filter

Theorem 2:
If the pair [ A, B’ ] is controllable (or stabilizable), where

B,, = B,W1/?
Then [A,C] is observable (or detectable) if and only if:
1) The solution of
M(k+1) = AM(k)AT + B,WBL

— T r - s
AM(K)CT [CM(R)CT + V|~ CM(k)A M(0) = 0

Converges to a unique stationary solution M, which satisfies

—1
M = AMAT + B,2WB,, — AMCT [cMCT + V| T CMAT
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Steady State Kalman Filter

Theorem 2: (continuation)
2) M is positive definite (semi-definite)

3) The close loop matrix A = A — LC
IS Schur

L = Amc” [omcT +v]



Steady State Kalman Filter

Theorem 3:

Under stationary noise and the conditions in
theorems 1) and 2),

The observer a-priori residual (innovations)

g’ (k) = y(k) — Cz°(k)

IS white

E{g°(k + D7 (k) |

cMCT + V|51

78



KF as an innovations filter

We will assume, without loss of generality that the control
Input Is zero, l.e.

u(k) = 0 k=01,

Plant:

x(k+ 1)

y(k)

Ax(k) + By w(k)

Cax(k)+ v(k)
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KF as an innovations (whitening) filter

@ plant /.\ /\

. \ Kalman filter [ _
W(z) Y(2)|+ Y (2)
— cowB, F—Or—O ’
‘ l//\o(z)
v i
White noise U White noise
input Colored noise output
output
(W + V] ¥ {C’MC’T-I—V]
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KF as a innovations (whitening) filter

@ plant /.\ /\

. \ Kalman filter [ _
W(z) Y(2)|+ Y (2)
— cowB, F—Or—O ’
‘ l//\o(z)
v i
White noise U White noise
input Colored noise output
output
(W + V] ¥ {C’MC’T-I—V]
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Return difference equality for LOR
(review)

YQ (z)
— CQ —

+ UG ;
—p B —»| (z[-A) > K >
X(z)

[1 4+ Go(z" DI [R+ B'PBII 4 Go(2)] = R+ GL(z71) Gy (2)

Open loop transfer function: TF from U(z) to Yy(2):
Go(2) = Ko(2)B Go(z) = Cy®(2)B
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Return difference equality for LOR

(review)
Substituting, Go(z) = Ko(2)B  Gp(2) = Cy®(2)B

N

[1 4+ Go(z" DI [R+ B'PBII 4 Go(2)] = R+ GL(z71) Gy (2)

W e obtain,

14+ Ko(z"1)B|' [BTPB+ R| [+ Ko(2)B] =

R [Cch(z—l)B}T [Cch(z)B]
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Kalman Filter & LQR Duality

[I + Kd(2)B]T [BTPB + R] [I + ch(z—l)B] —

11
R+ |Co®(2)B| |C,®(z"1)B]
LOR KF LOR KF
P M R vV
A AT CoT B,=B W12
B CT K LT

I+ LchT(z)CT]T cMCT + V| [T+ LToT(z7H)CT| =

V + [BgCDT(z)CT}T {BgCDT(z_l)CT}
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KF return difference equality

From,
I+ LchT(z)CT]T cMCT + V| [T+ LToT(z7H)CT| =
/ T /
V + [BJCDT(z)CT} {BU?CDT(z_l)CT}
we perform transpose operations and notice that:

B, B = B,WBY

This gives the desired result:

I+ CP(2)L] [CMCT + V| |1 ch(z—l)L}T_

V 4 [CD(2)Bu] W [Cb(z"1)By|"
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Kalman filter closed-loop eigenvalues
* A-priori KF (for u(k) = 0)
2°(k+1) = Az°%k)+ Ly°(k)
y°(k) = Cz°(k)

y'(k) = y(k) — Cz°(k)

Y(z) * Y(2)

— >

Y
@ CPEL |
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Kalman filter closed-loop eigenvalues

P(k+1) = (A-LC) #(k) + Ly(k)
A

*KF closed-loop eigenvalues

C(z) = det{(zI —Ac)} =0

= det{(zI—A+LC)} =0
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Kalman filter return difference

Y(z) * Y(2)

— >

Y (z)

CPEL |

Vo(2) = [T+ CPR)L]I 1Y (2)

Return difference: [ + C®(z)L]



Kalman filter return difference

« Similar to the LQR case, we have that
C(2)
A(2)

det{[I + C®(2)L]} =

» KF closed-loop eigenvalues

C(z) =det{(zI —A+LC)} =0

« KF open-loop eigenvalues

A(z) =det{(z] — A)} =0
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V(z)

90

KF return difference equality

W(z)

C (D(z)Bw

—> |

4

-~

Guw(z)

' l Yz) + Y(2)

N
Y
‘ 1l comr |

N J/

Go(2)

[T+ Go(2)] [CMCT + V| [T+ GO(Z—I)}T _

V+Guw()WGL(™h
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KF return difference equality (SISO)

Assume that both, w(k) € Randy(k), v(k) € R
V(z)

W) +\ Y(2) + Y ()
—— COEB, — = =

[P
N ~ < Y (2)
Guw(z) CORL |e— 0

\ . 4

Go(2)

1+ Go([ + Gz D] =7 (1 + - Gu()Gu (=)

B 1%4
v+ omoT

Y
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KF root locus for SISO Systems

V(z)

W) + \ Y + Y ()
— cOEB, —()— =

e
—_— Y

\ . 4

Go(2)

C’(z) <—=C.|. poles
A(z) = ol poles

[1 4+ Go(2)] = [1 4+ CP(2)L] =

Bqw(z) =—o.l. zeros

A(z) =— o.l poles

Guw(z) = CP(2)By =



KF root locus for SISO Systems

O _ [, BuG"H)Bu(2)
A(z—D)A(2) A A>R)
W Input noise intensity
p=—2>0 — ;
VvV measurement noise intensity
v

>0, for V€ (0,00)
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KF Loop phase margins (SISO)

Yz) T

—_—

I//\O(z)

CP:)L

A

Utilizing LOQR-KF duality,

Therefore, a lower bound to the phase margin

of Go(e?¥) is:

Go(2)

(1 4+ Go(e?*))] z\/

%

V+CcMCt

PM >?2sin~1 {0.5\/

%

V+CMCT

}
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KF Loop gain margins (SISO)

Ye) * Y'e)
Mo
Y (2)
7 | coeL|.
7 Go(2)
Estimator was designed for 7y — 1

Estimator is guaranteed to remain asymptotically stable for

1 e 1
1+ V/(V +CcMCT) 1 —/V/V 4+ coMcT)




Summary

« Stationary Kalman filters (KF):
— KF algebraic Riccati equation
— Convergence properties

« Kalman filter/ LOQR duality

« KF return difference equality
— Reciprocal root locus
— Guaranteed robustness margins
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