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Homework #3 Assigned: Mar. 2 (Wed)
Due: Mar. 8 (Tu)

1. In this problem we will verify some results concerning the convergence of the LQR’s
discrete Riccati equation (DRE) to a steady state solution and the existence, uniqueness
and closed loop stability of the discrete algebraic Riccati equation (DARE) solution.

Consider the design of an optimal LQR for the LTI discrete-time system

x(k+1)=Ax(k)+ Bu(k) (1)
y(k) = C (k)
where u(k) = —K(k+ 1) x(k) is the optimal control input that minimizes the following
cost criteria

N-1

J[xo,m,Qf,N}:xT(N)Qfx(N)+Z{yQ(kJ)—i-RuQ(k)} st. x(m)=uz,,

k=m
form =0, Q, = Q? > 0and R = R” = 0, and any arbitrary initial condition =, € R".

Define the optimal value function

S0, m, Q,, N| = min J[z,,m,Q,, N|

[m,N—1]
where Upp, n—1) = {u(m), - -+, u(N — 1)} is the set of all possible control actions from
k=mtok=N—1.
(a) Let
1.2 0 0 10 10 0
A=10 0 1 B=10 0 C=1[10 0 0] R:[O 10}
0 -2 0 01

and verify that (A, B) is stabilizable but (C, A) is not detectable. Let P(N) = @
For each of the four cases

i Q,=0

ii. @, = diag(0, 0, 1),
ii. Q, = diag(1, 1, 1),
iv. Q, = diag(10, 1, 1),
do the following:
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e Forz, =[1 0 1J7, plot J°[x,, N—m, Q,, N] vs m. (Note that this will require
computing P(k), the solution of the Riccati difference equation, backwards
from P(50) = Q,.)

e Compute the solution of the DARE symbolically in terms of unknown elements
of Py, and compare it with values of P(0) and P(1).

Discuss your results.

(b) Let
0.8 1 1 0
A=]0 -1 1 B= |0 c=[0 10 R=01.
0 0 -1 1

Repeat part (a) for the two cases

LQ,=0
ii. Q, =diag(0, 0, 1).
Discuss your results.
2. Consider the system
][0 ] [ e
w0 =[o 3] |20+ ot

where u(k) is a deterministic input and

« E{X(0)} = m and E{X(0)XT(0)} = {Obl o(.)J

e X(0) is Gaussian and (k) and V (k) are white Gaussian sequences

o my = E{W(k)} =10, E{V(k)} =0

o e[V vt —ma vy = [ s =g o] o

R RIS

A Kalman filter is used to estimate the state of the system using the measurement
sequence (k).

(a) Find the steady state values of the following time varying matrices and scalars:

e The a priori state estimation error covariance M (k)
e The a posteriori state estimation error covariance Z (k)

e The a priori output estimation error covariance

Agogo(k,0) = E{|7°(k)|*} = CM (k)CT + V.
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e The Kalman filter gains L(k) and F'(k)

You should find the steady state values of these quantities by recursively com-
puting their values forwards in time until they converge to their respective steady
state values.

(b) Plot the response of Agogo(k,0).

3. Kalman filter with correlated input and measurement noise:

Consider the discrete-time system given by
z(k+1) = Az(k) + Bu(k) + w(k) (2)
y(k) = Cx(k) + v(k) (3)

where E{z(0)} = z,, E{w(k)} = 0, E{v(k)} = 0, E{(z(0) — z,)(z(0) — z,)T} = X,,
E{(z(0) — z,)w” (k)} = 0, E{(z(0) — z,)vT(k)} = 0, and

w(k) AT Ll |W S .
p{ o] i v} =G 7 o)
where V' € R™*™ ig positive definite matrix. The a-priori Kalman filter for this system
can be written as
2°(k + 1) = Az°(k) + Bu(k) + L(k)[y(k) — Cz°(k)] (4)
L(k) = [AM (k)CT + S|[CM (k)CT + V]! (5)
M(k+1) = AM(K)AT + W — [AM(k)CT + S][CM (k)OT + V] [CM (k) AT + ST
(6)
with initial conditions 2°(0) = z, and M (0) = X,.
Derive Egs. (4)—(6) using previously-derived results in Kalman filtering and noticing
that Egs. (2)—(3) can be written as
w(k+1) = Aw(k) + Bu(k) +w' (k) + SV ~'y(k),

where A" = A — SV-I1C and



