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1. A pair of random variables, X and Y have a joint probability density function (PDF)

pXY (x, y) =

{
1 , 0 ≤ y ≤ 2x and 0 ≤ x ≤ 1

0 , elsewhere

(a) Compute the marginal probability density functions

pY (y) =

∫ ∞
−∞

pXY (x, y)dx, and pX(x) =

∫ ∞
−∞

pXY (x, y)dy

(b) Compute the marginal mean mX = E{X} =
∫∞
−∞ xpX(x)dx.

(c) Compute the marginal variance of X.

ΛXX =

∫ ∞
−∞

(x−mX)2pX(x)dx

(d) Obtain an expression for the conditional probability density function pX|Y (x|y),
i.e. the conditional PDF of X given the outcome Y = y for 0 ≤ y ≤ 2, where

pX|Y (x|y) =
pXY (x, y)

pY (y)

(e) Determine the conditional mean E{X|Y = y}, i.e. the expected value of X given
the outcome Y = y for 0 ≤ y ≤ 2.

(f) Determine the conditional mean E{X|Y = 0.5}.
(g) Notice that the conditional mean E{X|Y } can be thought of as a function of the

random variable Y . Therefore, it is itself a random variable. Introducing the
notation

mX|Y (Y ) = E{X|Y } =

∫ ∞
−∞

xpX|Y (x|Y )dx,

prove that the expected value of the conditional mean mX|Y (Y ) is equal to the
marginal mean of X, i.e.

E{mX|Y (Y )} =

∫ ∞
−∞

mX|Y (y)pY (y)dy = mX =

∫ ∞
−∞

xpX(x)dx.

Verify this result by computing E{mX|Y (Y )} and comparing it to mX for the
example above.
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(h) Compute the variance of the conditional mean mX|Y (Y ) for the example above.

ΛmX|Y mX|Y =

∫ ∞
−∞

(mX|Y (y)−mX)2pY (y)dy

You should find that ΛmX|Y mX|Y < ΛXX .

(i) Obtain an expression for the conditional variance of X given Y

ΛX|Y X|Y (Y ) = E{(X −mX|Y (Y ))2|Y } =

∫ ∞
−∞

(x−mX|Y (Y ))2pX|Y (x|Y )dx

for the example above. Notice that the conditional variance of X given Y ,
ΛX|Y X|Y (Y ) is also a random variable.

(j) Finally, compute the expected value of the conditional variance of X given Y ,

E{ΛX|Y X|Y (Y )} =

∫ ∞
−∞

ΛX|Y X|Y (y)pY (y)dy

for the example above and verify that

ΛXX = ΛmX|Y mX|Y + E{ΛX|Y X|Y (Y )}.

2. Consider the stochastic system

Y (k)− 0.5Y (k − 1) = W (k)− 0.3W (k − 1) (1)

where W (k) is a wide sense stationary (WSS) zero mean white random sequence with
unit variance, i.e.

m
W

= 0 Λ
WW

(l) = E{W (k + l)W (k)} = δ(l)

and δ(l) is the unit pulse function. In this problem, we will compare the theoretical
value of the relevant covariances with empirical estimates of those quantities computed
in a simulation. 1

(a) Do a numerical simulation (in Matlab, Python, or Julia) of the response of this
system for one sample sequence w(k) :

i. Generate the sample sequence w(k) using w = randn(N,1) or equivalent,
where N is a large number (e.g. 5000).

ii. Generate the sample output sequence y(k) by propagating the system dynam-
ics over time with a for loop.

iii. Generate and plot the estimates of the covariances and cross-covariances
ΛWW (j), ΛWY (j), ΛYW (j), ΛY Y (j), for j = {−10, −9, · · · , 0, · · · 10}.

1Since you will require an initial condition to perform time simulations, the output of the system given
by Eq. (1) will not, strictly speaking be WSS. However, if the length of the sample sequence is taken to be
sufficiently long, the relevant quantities will be approximately given by time averages.
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(b) Determine the cross-covariance (cross-correlation) function

ΛYW (l) = E{Y (k + l)W (k)}

and Λ̂YW (z) =
∑∞

l=−∞ z
−lΛYW (l). Plot ΛYW (l) for l = {−10, −9, · · · , 0, · · · 10}

and compare the results with those empirically obtained from your simulation.
Notice that ΛYW (l) is a causal sequence, i.e. ΛYW (l) = 0 for l < 0 and all the
poles of Λ̂YW (z) will be inside the unit circle.

(c) Determine the cross-covariance (cross-correlation) function

ΛWY (l) = E{W (k + l)Y (k)}

and Λ̂WY (z) =
∑∞

l=−∞ z
−lΛWY (l). Plot ΛWY (l) for l = {−10, −9, · · · , 0, · · · 10}

and compare the results with those empirically obtained from your simulation.
Notice that ΛWY (l) is an anti-causal sequence, i.e. ΛWY (l) = 0 for l > 0 and all
the poles of Λ̂WY (z) will be outside the unit circle.

(d) Determine the auto-covariance (auto-correlation) function

ΛY Y (l) = E{Y (k + l)Y (k)}

and Λ̂Y Y (z) =
∑∞

l=−∞ z
−lΛY Y (l). Plot ΛY Y (l) for l = {−10, −9, · · · , 0, · · · 10}

and compare the results with those empirically obtained from your simulation.
Notice that Λ̂Y Y (z) will have poles both outside and inside the unit circle.

(e) Compute Λ
Y W

(0) utilizing Eq. (1).

Hint: Multiply both sides of Eq. (1) by W (k) and take expectations.

(f) Compute Λ
Y W

(1) utilizing Eq. (1).

Hint: Multiply both sides of Eq. (1) by W (k − 1) and take expectations.

(g) Compute Λ
Y Y

(0) utilizing equation (1).

Hint: From Eq. (1) we have

Y (k) = 0.5Y (k − 1) +W (k)− 0.3W (k − 1) . (2)

Square both sides of Eq. (2) and take expectations.

3. Let X ∼ N(10, 2), V1 ∼ N(0, 1) and V2 ∼ N(0, 2) be independent random variables.
Assume that you are trying to make a measurement of X with two different instruments.
Let Y = X+V1 be the measurement of X using the first instrument and Z = X+V2 be
the measurement of X using the second instrument, where V1 and V2 are respectively
the measurement noises of the first and second instruments.

(a) Determine m
X|Y =9

, i.e. the conditional expectation of X given that the first in-
strument yielded the measurement Y = 9.

(b) Determine m
X|Z=11

, i.e. the conditional expectation of X given that the second
instrument yielded the measurement Z = 11.
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(c) Determine m
X|(Y =9,Z=11)

, i.e. the conditional expectation of X given that the first
and second instruments respectively yielded the measurements Y = 9 and Z = 11.

4. A random variable X is repeatedly measured, but the measurements are noisy. Assume
that the measurement process can be described by

Y (k) = X + V (k)

where X, V (0), V (1), V (2), . . . are jointly Gaussian random variables with

E{X} = 0 E{X2} = X0

E{V (k)} = 0 E{V (k + j)V (k)} = Σ
V
δ(j)

E{XV (k)} = 0 .

Let y(k) be the k-th measurement (i.e. outcome of Y (k)) and let ȳ(k) = {y(0), . . . , y(k)}.

(a) Obtain the least squares estimate of X given the k+1 measurements y(0), . . . , y(k)
and the corresponding estimation error covariance, i.e. find x̂|ȳ(k) and ΛX̃|ȳ(k)X̃|ȳ(k)

.

Hint: You do not need to invert a (k+1)× (k+1) matrix to find these quantities.
Instead express

Λȳ(k)ȳ(k) = A+ uvT

where A is a matrix that is easy to invert and u and v are vectors. In this case,
the matrix inversion lemma says that

Λ−1
ȳ(k)ȳ(k) = A−1 − 1

1 + vTA−1u
A−1uvTA−1 .

(b) We now examine the case when X0 → ∞, i.e. when no prior information is
available on X. Show the following:

lim
X0→∞

(
x̂|ȳ(k)

)
=

1

k + 1
[y(0) + y(1) + · · ·+ y(k)]

lim
X0→∞

(
Λ

X̃|ȳ(k)X̃|ȳ(k)

)
=

Σ
V

k + 1
.
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