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Outline

• Review of Feedback 

• LQG stability margins

• LQG-LTR



Basic Feedback Transfer Functions (TF)
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• Y(s) is the controlled output

• U(s) is the control input

• E(s) is error signal fed to the 

controller

• R(s) is the output reference

• D(s) is the disturbance input

• V(s) is the measurement noise

“true” error signal 



Basic Feedback Transfer Functions (TF)
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“true” error signal 

sensitivity TF complementary

sensitivity TF



Basic Feedback Transfer Functions (TF)
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Frequency domain and singular values:



1)                   and                  are normally large at low frequencies

Basic Feedback Transfer Functions (TF)
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Frequency domain:

at low frequencies

2)                    and plant model uncertainties are  normally large at 

high frequencies

at high frequencies



Basic Feedback Transfer Functions (TF)
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at low frequencies

at high frequencies

Gain

0 db
high frequency

constraint

low

frequency

constraint

(SISO)



Bode’s integral theorem (SIS0)
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Let the open loop transfer function Go(s) have relative degree ≥ 2 and let 

p1, p2 , … pm be the unstable open loop poles (right have plane)

When Go(s) is stable,



roots of                        are the open loop poles 

roots of                        are the closed loop poles 

Multivariable Nyquist Stability Criterion

return difference
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roots of                        : number of counterclockwise encirclements around 0

by  det[ L(s) ]  when s is along the Nyquist path D

Nyquist path D



Multivariable Nyquist Stability Criterion
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roots of                        : number of counterclockwise encirclements around 0

by  det[ L(s) ]  when s is along the Nyquist path D

Nyquist path D

P =  # of unstable open loop poles

Z =  # of unstable closed loop poles



Robust Stability
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Nominal closed loop system

(asymptotically stable) Actual system

: output multiplicative 

uncertainty

Feedback system has robust stability

iff

when s is along the Nyquist path D

-

+



Robust Stability
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robust stability iff

when s is along the Nyquist path D

for all

for all



Robust Stability
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for all



Robust Stability
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at high frequencies when ,

-

+
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Stationary LQR

Cost:

• Optimal control: 

Where the gain is obtained from the solution of 

the steady state LQR
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LQR robustness properties

Phase Margin ≥ 60o

Close loop system

is stable for:
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Stationary Kalman Filter

• Kalman Filter Estimator: 
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KF dual robustness properties

Phase Margin ≥ 60o

Close loop system

is stable for:

-

+
L

U(s)

C

X(s)

(s)
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“Fictitious” KF robustness properties

Phase Margin ≥ 60o

Close loop system

is stable for:

-

+
L

U(s)

C

X(s)

(s)
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LQR example 1

Double integrator (example in pp ME232-143):

with

Only position is penalized
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LQR example 1

Double integrator (example in pp ME232-143):
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Fictitious KF Feedback Loop example 1

Controller design parameters Bw, W, V are chosen  

-

+
L

U(s)

C

X(s)

(s)

KF return difference equality  = LQR return difference equality 
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Fictitious KF example 1 margins
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Stationary LQG

YX
(zI-A )-1 CB

+ +U

W

VBw
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Stationary LQG

Cost:

• Optimal control: 

Where the gain is obtained from the solution of 

the steady state LQR
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Stationary LQG

• Kalman Filter Estimator: 
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Stationary LQG Compensator

-Y(s)

-
sL -K

U(s)+
X(s)
^

C
Y(s)
^

B
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LQG Loop Transfer
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L

U(s)

K

X(s)

(s)

C

B

-+
^

^

B C

X(s)

(s)
-

+ Y(s)
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LQG Robustness Margins?

-

Unfortunately, there are no guaranteed robustness 

margins results for a general LQG controller
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Example -1 Double integrator

YX
(zI-A )-1 CB

+ +U

W

VBw
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LQG example 1

Double integrator (example in pp ME232-143):

with
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Fictitious KF Feedback Loop example 1
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LQG – Loop Transfer Recovery

LQG-LTR was developed by Prof. John Doyle 

(when he was a M.S. student at MIT).

• `Guaranteed margins for LQG regulators,'' J. 

Doyle, IEEE Trans. on Auto. Control (T-AC), 

August, 1978. 

• ``Robustness with observers,'' J. Doyle and 

G. Stein, IEEE T-AC, August, 1979. 



40

John Doyle

Other important contributions  in Robust Control

• `State-space solutions to standard H2 and 
H optimal control problems,'' J. Doyle, K. 
Glover, P. Khargonekar, and B. Francis, IEEE 
T-AC, August, 1989 (Outstanding Paper 
Award Winner and Baker Prize Winner). 

• ``Analysis of feedback systems with 
structured uncertainty (),'' 

J. Doyle, IEE Proceedings, V129, Part D, 
No.6, November, 1982. 
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LQG – Loop Transfer Recovery

LQG-LTR is a  robust control design methodology that 
uses the LQG control structure

• LQG-LTR is not an optimal control design methodology.

• LQG-LTR is not even a stochastic control design 

methodology.

• A fictitious Kalman Filter is used as a robust control 

design methodology.

– Output noise intensity and  input noise vector

(V & Bw) are used as design parameters – not true 

noise parameters.
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Stationary LQG Compensator

-Y(s)

-
sL -K

U(s)+
X(s)
^

C
Y(s)
^

B



• is a multiplicative uncertainty which is stable 

and bounded, i.e. 

LQG-LTR Method 1

• How to make an LQG compensator structure robust 

to unmodeled output multiplicative uncertainties

43

-

+



And let             be the state feedback gain that is 

obtained as follows

44

Let                                                    where

LQG-LTR Theorem 1

make LQR weight:  CQ = C
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LQG-LTR Theorem 1

-

Under the assumptions in the previous page

• If                                       is square and has no 

unstable zeros, then point-wise in s
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is the state feedback solution of the 

following LQR

LQG-LTR Theorem 1

“cheap” control   LQR 

• C is the state output matrix in:

• which is made very small, i.e.



LQG-LTR Method 1
47
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“cheap” control   LQR 

-

+

:  CQ = C



48

LQG-LTR-Method 1

Make it approximate 

(point-wise in s)

-

+
L

U(s)

K

X(s)

(s)

C

B

-+
^

^

B C

X(s)

(s)
-

+ Y(s)

-

+
L

U(s)

C

X(s)

(s)
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Since the LTR procedure achieves:

We need to determine the observer feedback L so 

that the target system has desirable properties                                  

Fictitious KF is the target system

-

+
L

U(s)

C

X(s)

(s)

More on this later
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Example -1 Double integrator

YX
(zI-A )-1 CB

+ +U

W

VBw

no unstable zeros
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Design fictitious KF Target System
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LTR procedure for computing

1) For a small                   compute: 

where P is the solution of

2) Check if  

otherwise, decrease        and repeat the process.   
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LQG-LTR-Method 1

Make it approximate 

(point-wise in s)
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Select Bw, W, and V as design parameters to shape 

the open loop transfer function 

Fictitious KF design parameters

-

+
L

U(s)

C

X(s)

(s)
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Fictitious KF Feedback Loop

Sensitivity and Complementary sensitivity Transfer Functions:

-

+
L

U(s)

C

X(s)

(s)



Simplify fictitious noise covariance description

57

KF gain L is calculated by:

YX
(zI-A )-1 CB

+ +U

W

VBw

only the ratio

W/V

is important

µ: measurement noise

standard deviation



Simplify fictitious noise covariance description
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KF gain L is calculated by:

-

+
L

U(s)

C

X(s)

(s)

Return difference equality:
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Fictitious KF Feedback Loop Design

Design parameters:

• Fictitious  input noise input vector: 

• Fictitious output noise standard deviation:

(affects bandwidth of close loop system)  

-

+
L

U(s)

C

X(s)

(s)

Design equation: (return difference equation)

ith singular value

affects zeros of

Gw(s)
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Fictitious KF Feedback Loop Design

-

+
L

U(s)

C

X(s)

(s)

1. Designer-specified shapes:

(generally at low frequency)

use  Bw to place zeros of  Gw(jω)

When
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Fictitious KF Feedback Loop Design

-

+
L

U(s)

C

X(s)

(s)

2. High frequency attenuation: As

(gain Bode plot has -20 db/dec slope)
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Fictitious KF Feedback Loop Design

-

+
L

U(s)

C

X(s)

(s)

3. Well-behaved crossover  frequency :

Sensitivitiy and complementary sensitivity TFs never become too large 

(even in the vicinity of the gain crossover frequency)
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Fictitious KF Target Design

• Design parameters:

places zeros of 

adjusts  gain crossover 

frequency of  

-

+
L

U(s)

C

X(s)

(s)

Goal: “Shape” the fictitious KF open loop transfer function  



64

Example 1 – double integrator
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Example 1: selection of Bw

-

+
L

U(s)

C

X(s)

(s)

-40 db/dec

-20 db/dec

sets the location of the zero
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Example 1: selection of Bw
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Example 1: selection of µ
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+
L

U(s)

C

X(s)

(s)

µ: adjusts  gain crossover 

frequency of  

In this example we will set
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Example 1: selection of µ

-

+
L

U(s)

C

X(s)

(s)

1. Designer-specified shapes:

(low frequencies)
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Example 1: selection of µ
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L

U(s)

C

X(s)

(s)

2. High frequency attenuation:

(gain Bode plot has 

-20 db/dec slope)
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Example 1: selection of µ

-

+
L

U(s)

C

X(s)

(s)

3. Well-behaved crossover

frequency:
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Example-2: Unstable Plant

no unstable zeros
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YX
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+ +U

W
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Example-2: I-action

• Introduce I-action to achieve 0 steady-state 

error to constant reference input

• Define I-action extended system

integrator dynamics to implement I-action
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Example-2: I-action

• Define I-action extended system
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Example-2: I-action

• I-action extended system

YX
(zI-A )-1 CB

+ +U

W

VBw
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Example-2: selection of Bw

W(s)

R(s)

-
sL C

B

Y(s)+

w

e e e

e

Design parameter:  We can “place” two zeros of  Gw(s) 

remember that, at low frequencies,
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Example-2: selection of Bw
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Example-2: selection of µ

Example:  

-

+
L

U(s)

C

X(s)

(s)

for

1. Designer-specified shapes:

(low frequencies)

eee
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Example-2: selection of µ

Example:  
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Example-2: Fictitious KF Design

Example:  
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3. Well-behaved crossover frequency:
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Example-2: selection of Bw

1. 2 close loop poles converge to 

the zeros  of  Gw(s) 

2. The reminder pole goes to -

Close loop poles:   As

-
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L

U(s)

C

X(s)

(s)
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Example-2: selection of Bw

Return difference: fictitious KF

close loop poles
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X(s)

(s)

Symmetric root locus:

We have the freedom to specify the location of the zero polynomial Bw(s)

eee
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Example-2:Fictitous KF Target Design

Open loop zeros
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Example-2: LQG-LTR recovery

Use on extended system (including integrator dynamics)

Keep decreasing          until
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Example-2: LQG-LTR

Keep decreasing          until
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Example-2: LQG-LTR
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• is a multiplicative uncertainty which is stable 

and bounded, i.e. 

LQG-LTR Method 2

• How to make an LQG compensator structure robust 

to unmodeled input multiplicative uncertainties

86

-

+



And let             be the Kalman Filter feedback gain that is 

obtained as follows

87

Let                                                    where

LQG-LTR Theorem 2
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LQG-LTR Theorem 2

-

Under the assumptions in the previous page

• If                                       is square and has no 

unstable zeros, then point-wise in s



89

is the Kalman Filter gain solution of the following 

filtering problem

LQG-LTR Theorem 2

“noiseless” output measurement

• which is made very small, i.e.

YX
(zI-A )-1 CB

+ +U

W

VBw



-

+

LQG-LTR Method 2
90

-

+

“noiseless” output measurement
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More on LQG-LTR

• LTR Theorem Proof: Read ME233 Class Notes, 

pages  LTR-3 to LTR- 5

(also back of these notes)

• Fictitious Kalman Filter Design Techniques: Read 

ME233 Class Notes, pages  LTR-6 to LTR- 9

• Stein and Athans “The LQG/LTR Procedure for 

Multivariable Feedback Control Design,” IEEE TAC. 

Vol. AC-32. NO. 2, Feb 1987
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Outline

• Continuous time LQR stability margins

• Continuous time Kalman Filter stability 

margins

• Fictitious Kalman Filter

• LQG stability margins

• LQG-LTR
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LQG-LTR Theorem 1
Assume that:

• where 

–

– The feedback gain K is satisfies 

• If                                       is square and has no unstable 

zeros, then point-wise in s
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Notation

• For convenience, we define:
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Linear Algebra Result

• We often use results like:

• which can be easily verified by multiplying left 

and right by the appropriate matrices:
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LQG-LTR – Theorem 1 Proof

Proof: The result is obtained in 4 steps:

Step 1: Alternate expression for the LQG 

compensator 

where
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Proof of Step 1
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LQG-LTR – Theorem 1 Proof

Step 2: Let              be given by

where P is the solution of

( LTR procedure for computing              )
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LQG-LTR – Theorem 1 Proof

Then as 

where T is unitary, i.e.

If                                       has no unstable zeros



has no unstable zeros  if and only if

100

Lemma: maximally achievable accuracy of LQR

To proof step 2 we use the following  lemma from:

Kwakernaak, H. and Sivan, R. “The maximally achievable accuracy of 

linear optimal regulators and linear optimal filters.”  IEEE Transactions 

on Automatic Control, vol.AC-17, no.1, Feb. 1972, pp. 79-86. USA.

Let P be the solution of the following algebraic Riccati equation

Then

where                                 and                                         is square.  
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Sketch of proof of step 2

Rewriting the Riccati equation

and utilizing 

results in 

Thus, 
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LQG-LTR - Proof

Step 3: If                                       is square and 

has no unstable zeros, then as 

where
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Proof of Step 3

substitute:

0
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LQG-LTR – Theorem 1 Proof

Step 4: If                                       is square and 

has no unstable zeros, then as 

where
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Proof of Step 4
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Proof of Step 4
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LQG-LTR Theorem 2
Let:

• where 

–

– The feedback gain L is satisfies 

• If                                       is square and has no unstable 

zeros, then point-wise in s



Proof LQG-LTR Theorem 2

• Start with LQG-LTR Theorem 1 

• Apply LQG – KF duality 
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