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ME 233 Advanced Control II

Continuous time results 2

Kalman filters

(ME233 Class Notes pp.KF7-KF10)
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Outline

• Continuous time Kalman Filter

• LQ-KF  duality

• KF return difference equality

– symmetric root locus

• ARMAX models
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Stochastic state model

Consider the following nth order  LTI system with 

stochastic input and measurement noise:

Where:

• deterministic (known) input

• Gaussian, white noise, zero mean, input   noise

• Gaussian, white noise, zero mean, meas. noise

• Gaussian
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Assumptions

• Initial conditions:

• Noise properties (in addition to Gaussian),:



Conditional estimation

• Conditional state estimate

5

• Conditional state estimation error covariance
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CT Kalman Filter

Kalman filter:

Where:
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Steady State KF  
Theorem:

1) If the pair  (C, A) is observable (or detectable):

The solution of the Riccati differential equation

Converges to a stationary solution, which satisfies the 

Algebraic Riccati Equation (ARE):
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Steady State KF  
Theorem:

2) If in addition to 1) the pair  (A,B’w) is controllable (stabilizable), where 

The solution of the Algebraic Riccati Equation (ARE):

is unique, positive definite (semi-definite) , and the close loop observer 

matrix

is Hurwitz.
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Steady State Kalman Filter
Theorem:

3) Under stationary noise and the conditions in 1) and 2),

The observer residual   

of the KF:

becomes white
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KF as a innovations (whitening) filter
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LQR duality
Cost:

Where:
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Kalman Filter & LQR Duality
Comparing ARE’s and feedback gains, we obtain the following 

duality
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KF return difference equality
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KF root locus for SISO Systems
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KF symmetric root locus for SISO Systems

roots are plant poles

roots are Kalman filter poles
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KF Loop gain and phase margins (SISO)

Consider the closed loop sensitive transfer function
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KF Loop phase margins (SISO)

Since,

The phase margin of                  is  greater than or equal 

to 60 degrees.
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KF Loop gain margins (SISO)

Estimator was designed for 

Estimator  is guaranteed to remain asymptotically stable for    
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ô

~

C (z)



SISO ARMAX model:

19

SISO ARMAX stochastic models

(Hurwitz)

Kalman filter innovations (residual)
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Outline

– Continuous time Kalman Filter

– LQ-KF  duality

– KF return difference equality

• symmetric root locus

– ARMAX models

Additional material:

• Derivation of continuous time Kalman Filter
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Derivation of the CT Kalman Filter

1. Approximate the CT state estimation problem by a 

DT state estimation problem .

2. Obtain the DT Kalman filter for the DT state 

estimation problem.

3. Obtain the CT Kalman filter from the DT Kalman 

filter by taking the limit as the sampling time 

approaches to zero.
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CT Kalman Filter

Consider the following nth order  LTI system with 

stochastic input and measurement noise:

Where:

• deterministic input

• Gaussian, white noise, zero mean, input   noise

• Gaussian, white noise, zero mean, meas. noise

• Gaussian
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Derivation of the CT Kalman Filter

1. Approximate the CT state estimation problem by a 

DT state estimation problem .

2. Obtain the DT Kalman filter for the DT state 

estimation problem.

3. Obtain the CT Kalman filter from the DT Kalman 

filter by taking the limit as the sampling time 

approaches to zero.
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Derivation of the CT Kalman Filter

1. Approximate the CT state estimation problem by a 

DT state estimation problem :

• State and output equations:
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Derivation of the CT Kalman Filter

• Covariances (from pages 48-52 in random process 

lecture 8):

Notice that:
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Derivation of the CT Kalman Filter

• Covariances:

Notice that:
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Derivation of the CT Kalman Filter

2. Obtain the DT Kalman filter for the DT state 

estimation problem.
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Derivation of the CT Kalman Filter
3) Obtain the CT Kalman filter from the DT Kalman filter.

• State Equation:
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Derivation of the CT Kalman Filter

Taking limit as
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Derivation of the CT Kalman Filter

Kalman filter gain
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Derivation of the CT Kalman Filter

Riccati equation

Subtracting               from both sides and dividing by  
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Derivation of the CT Kalman Filter

Taking

we obtain 


