ME 233 Advanced Control Il

Continuous time results 1

Random processes

(ME233 Class Notes pp. PR6-PR13)



Random Process

A random processes Is a continuous function
of time

X():R—R

Such that for any time to |,
X (to)
Is a random variable defined over the same probability space

(€2, S, Pr)
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Random process

Let X(t) be a random process

Let {t1,tp,---,tn}  beacollection of times

pX(tl),X(tQ)a“‘aX(tN) (mtla mtza Ty ',EtN)

IS the joint PDF of
{X<t1>7 X(t2>7 R X(tN)}

This is often a huge amount of redundant information



2nd order statistics

Let X () be a random vector process

Expected value or mean of X(2),
E {X(t)} — mx(t)

Auto-covariance function:

Ayx(t,7) =

E{X(t+7)—myt+] [X®) —m®)]"}



Define:

A

Auto-covariance function

X(t) = X(t) — my(t)

Ax(tm) = E{X(t+7)XT(t)]

xx(t

([ Ry(t+7)

] Xn(t.—l- T) |

X)) -

R (t) |

\

~

/



Strict Sense Stationary random sequence
Arandom process X (t)

IS Strict Sense Stationary (SSS) If the joint probability, Is
iInvariant with time

P(X(t]_)giljtl,"‘,X(tN>SCL'tN) —

P(X(tl+1;) Smtla D X(tN_I_Z) Smt]\[)

for any time shift 7,



Ergodicity
A Strict Sense Stationary random process
X (t)

IS ergodic if we can recover an ensemble average
from the time average of any realization:

E{X(®)} = my

lim l/T 2 (t)dt

T—oo'l'J-T
with probability 1 B
(almost surely) — &
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Wide Sense Stationarity

A random sequence

IS Wide Sense Stationary (WSS) If:

1) Its mean is time invariant

E{X(t)} = my
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Wide Sense Stationarity

A random sequence

IS Wide Sense Stationary (WSS) If:

2) Its covariance only depends on the correlation
shift T

Ny (t,7) =Ny (0 +T,7)



Wide Sense Stationarity

The auto-covariance function can be defined only as
a function of the correlation time shift 7

Ayx(T) = B{X(t+ X" ()}

Notice that:

/\X)((T> — A§X(_T>

trace{A,(0)} > |trace{A,(7)}]
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Cross-covariance function

Let X(t)eR®* and Y@)eR™
be two WSS random vector processes

The cross-covariance function:

Ay (7) =E {X(t + YT (t)}

forany time ¢



Cross-covariance function

Ay (7) = E {X(t + YT (t)}

/\XY (7_) — /\C)Z;X (_7_)
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Power Spectral Density Function

For WSS random process, the power spectral density
function is the Fourier transform of the auto-
covariance function:

Dy y (W) F{iNgx(7)}

O .
/ Ny (T)e /%7 dr
— OO

16



Power Spectral Density Function
Since,

Ny (T) = .7:_1{<I>XX(w)}
1 > jwr
p— E/_OO 6‘7 CIDXX((U) dw
1 OO
Ny (0) = — P (w) dw
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W hite noise

A WSS random process W(t) c R is white if:

Ay (8) = 02, 6(2)

Where 0(t) s the Dirac delta impulse

white noise Is zero mean if [ W)} =0
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W hite noise

The power spectral density function for white noise
IS:

Py (0) = o7,

o
=
b
\J
[

> —JWT
/OO Ny (T)e 1 dT

5 [0 i 5y d
W_Ooe T)QaT
2
W

o)
o)



A

=N

W hite noise

Aywer)

Ny (T) = UVQV o(7)

P (w) =0

Infinite bandwidth

2
4%

A (DWW(w)

=N
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White noise vector process

A WSS random vector sequence W (t) € R" s
white If:

Ny (T) = X0, 6(7)

where

-1 >0

2w WW —

and  6(t) s the Dirac delta impulse

21



MIMQO Linear Time Invariant Systems

Let G(t) € RP*™

be the impulse response of an LTI SISO system
with transfer function

o0

G(s) = L{G(t)} = / e=5t G(1) dt

— OO
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MIMQO Linear Time Invariant Systems
Let U@®) € R™ beWSS

Then the forced response (zero initial state)

Y (t) = /OO G(r)U(t — 7)dr

— OO

Y(t) € R isalso WSS

23



MIMQO Linear Time Invariant Systems

We will assume that

* The WSS random process U (t)

IS Zzero mean, l.e.
E{U(t)} =m,; =0

Thus, the output random process is also zero mean

E{Y(t)} =m, =0
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If

25

MIMQO Linear Time Invariant Systems
Let U(t) be WSS

N (T) Ny (7)) =B{Y ¢t +n07 1)

—| Gr) |—>



MIMQO Linear Time Invariant Systems
Let U (%) be a WSS random process

/\UU(S) /\YU(S)

S
CDUU(UJ) CDYU(w)
St

Py (w) = AUU(S)‘Szjw Py p(w) = /\YU(S)‘Sij
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MIMQO Linear Time Invariant Systems
Let U (%) be a WSS random process

/\UU(S) /\YU(S)
S

Suy(w) G(jw) CDYU(?

Py (w) = AUU(S)‘Szjw Py p(w) = /\YU(S)‘Sij
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MIMQO Linear Time Invariant Systems

Let U (%) be a WSS vector random

process

If

Then:

Y () = /OO G(HU(t — 7)dr

— OO

Ao = [ G Ny (r =) dn

— OO

P, (w) = G(w) Py (w)

28
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MIMO Linear Time Invariant Systems

Avo(m) = [ G) Ay (r =) d

— OO

Proof: 50
v()= | GEUE-mdr  (m, = 0)

Then:

Ay (T) = E{Y(t+n)UL®)}
= E{|[ " coUt+r—ndn| UT®)]

— OO

— /_O;G(n)E{U(t r—nUT ()} dn

| GO Ay (r =) dn

— 00



MIMQO Linear Time Invariant Systems

Let U(t) be WSS

! U(t) Y (t)

—_— | G(t) |

Then:

E{Ut+ )YV ()} = /\Uy(T) /\YY(T)

S
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MIMQO Linear Time Invariant Systems
Let U (%) be a WSS random process

/\UY(S) /\yy(s)
S

Puy (W) | ) Pry(w)

Py (w) = /\UY(S)‘Szjw Pyy (W) = /\YY(S)‘Sij
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MIMQO Linear Time Invariant Systems

Py (w) = dL (—w)

Proof: Rememberthat  /\;;y (1) = /\gU(—T)

o0 .
Py (w) / ~ Ny (T)e /%7 dr

>~ AL (—P)e I9Tdr = ~ AL (1)ed“Tdr
oo YU s YU

CD?U(_”)
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MIMQO Linear Time Invariant Systems
Let U(t) beWSS

f Y () = /OO G(r)U(t — 7)dr

— OO

Then:

P, (w) = G(w) Py (w) GT(—jw)

G*(jw)



MIMQO Linear Time Invariant Systems
Proof: Use bey(w) = G(w) chy(w)
Sy (w) = G(w) Py (w)
then Py (w) = Cbz;U(_w)

() = 9 (—w) ¢T(~w)

and b, (w)

b, (W) = Gw) D, (w) G (—w)
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White noise driven state space systems

Consider a LTI system driven by white noise:

%X(t} = AX(@()+ BW(t)
Y(it) = CX(t)
X (1) € R™ W((t) e R¥

Y(t) e R™

35



White noise driven state space systems

%X(t} — AX()+ BW(t)

Y(t) = CX(t)
Assume that  W(t) is white, but not stationary
my, (1) = E{W()}

Ny (8, 7) = Zyy (2) 6(7)
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White noise driven state space systems

Yy = AX) +BWE)

dt
Y(t) = CX(t)

Assume state Initial Conditions (IC):

mx(o) — E{X(O)}

A¢x(0,0) = E{X(0)X7(0)]

E{X(O)VT/T(t)} =0

37
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White noise driven state space systems

d
ﬁX(t)

AX(t) + BW(¢)

Y(t) = CX(t)

Taking expectations on the equations above, we obtain:

d
%mx (t)

Amy (t) + Bmy, (1)

m, (1) = Cmy(t)



White noise driven state space systems

Subtracting the means,

L0

y AXQ®)+ BW(®)

Y () C X (t)

m.(t) = 0 my () = 0 m, (1)
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White noise driven covariance propagation

d
DN G(10) = AN(1.0) 4 Ay (£0) A7

+ Bx,,,(t)B

with

Aex(t,0) = E{X®OXT()}

Ay (2, 0)

|
T
——
=
=
s
—
|
M
<
=




White noise driven covariance propagation

Also,

Ny (E, 7)) =

e AT Ny« (t,0)

T >0

where:

Aex(t7) = E{X(t+71)XT®)}
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White noise driven covariance propagation

Also,

Nyx (@, —T) = Ay (t—7,0) e T T > 0

where:

Aex(t7) = E{X(t+71)XT®)}

42



Stationary covariance eguation

For W(t) WSS,

and A Hurwitz,

Ay (T) = lim E{X({t+ )X @)}

43
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Stationary covariance eguation

For W(t) WSS, and A Hurwitz,

Ay (1) = lim E{X(t+ )X ()}

{— 00

Satisfies:

AN (O)+A, (0)A =-Bx . B!

Ay (T) = e A, (0) >0




The next section contains
some Proofs of the CT
results

R |

Please go over them by
yourselves...
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Proof of continuous time results — Method 1

We first prove that:

d
SNk (8:0) = AN(10) + Ay (1,0) AT

+ BXx,, (t)B!

By starting from the Discrete Time (DT) results



Proof of continuous time results — Method 1
Approximate the state equation ODE

%X(t) — AX()+BW(@®)

using the Euler numerical integration method.

d 1
@X(O ~ E{X((k-l-l)At) — X(kAt)}

* We have to be careful in dealing with white
noise W (t)

47



Approximate W (t)

1. Define W (k) as the time average of W (t)

1 (k+1)At
W (k / W (t)dt
(W) ~ ()
Similarly, taking expectations
1 (k+1)At
my (k) ~ —— / myy, (L) dt

48



Approximate A (k,0) for W(t) white

Ay (B, 0) = E{W(E)WL(k)}

1 (k+1)At 1 DA
~ E{(E /km W(t)dt) (Kt /mt W (T)df)}

\ J\ J
Y Y

~ W (k) ~ W1(k)
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Approximate A (k,0) for W(t) white

Ay (B, 0) = E{W(E)WL(k)}

1 (k4+1)AL (k+1)At e
S A /mt /km E{W@OWT (1)) drdt
\ y,
Y
ZWW(T)\5(t — 7'2
since for W(t) white Dirac impulse

E{WOWH ()} = BE{W (& +t— )W (1)} = Ty ()3 — 7)



Approximate Ay, (k,0)

for W(t) white

Ay (B, 0) = E{W(E)WL(k)}

N 1 /(k—l—l)At [/k(k—l—l)At

2 (T)0(t — 7)dr| dt

T (Aan)? Jkat At
g J
Y
>y (1)
1 (k+1)At
~ A2 /k N > () dt

o1



Approximate A (k,0) for W(t) white

Ay (B, 0) = E{W(E)WL(k)}

1 (k+1)At
~ A2 /k N > () dt
1 | 1 (k+1)At |
(At (AL Jrad ZWW{t)dt_
g ~ J

2w (k)
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Approximate A (k,0) for W(t) white

1
A (k.0 —= 5, (k)

Where X, (k) is the time average of Z,;, (t)

1 (k4+1)At
2 (k) N /kAt 2 (T)dT



Numerical Integration
The state equation

%X(t) — AX()+BW(@®)

By the discrete time state equation

X(k+1) =~ [I+ AtA] X (k) + BALW(k)
Ay By

where

1 (k+1)At
W(k) ~ — /kAt

W(t)dt
~ (£)



55

Proof of continuous time results — Method 1

1. Obtain DT state equations by approximating the CT
state equation solution:

%X(t) — AX(t) 4+ BW()

d 1
X)) & AX((k+ DAY - X (KA}

Thus,

X(k4+1) ~ [I+ AtA]X(k)+ BALW(k)
Xd By

1 (k+1)At
/k W (t)dt

where W(k) ~ 7 Jin
t
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Proof of continuous time results — M1

2. Obtain the CT covariance propagation equation from
from the DT covariance propagation, using the
approximated DT state equation:

Q

1
Ay (k+1,0) AgN s (k,0) AL + By EZWW(k:) By

~(I+ At A A (k,0) (I +atA +atBx,,, (k) BY

~ Ay (k,0) + At AN (k,0) + AtA,(k,0)AT

+(A1)? AN, (K, 0)AT + At BY (k) BY




o7

Proof of continuous time results — M1
3. Takethelimitas At — 0 of

Ay ((k+ 1)AtL,0) — Ay (kAL 0)
A\t

AN (KA 0) + A (BAL0) AL + B, (k) BY

(a4

+At AN (kAL 0) AT

and noticing that

1 (k+1)At

im = kzlim—/ S (4)dt
At—0 ww (k) At—0 At JeAt ww (£)

=y ()
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Proof of continuous time results — M1
3. Takethelimitas At — 0 of

%/\WW(t,O)
Ay ((k+1)At,0) — )

/m/ > o (£)
A/\XX(/A/' 0) + /\XXM 0) AT + B (k) BT

+M\XX(kAt, 0) AT

Thus,

d
SNk (8:0) = AN(10) + Ay (1,0) AT

+Bx,,, (t) B!
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Proof of continuous time results — Method 2

We now proof that:

d
SNk (8:0) = AN(10) + Ay (1,0) AT

+ BXx,, (t)B!

Directly from continuous time (CT) results
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Proof of continuous time results — M2

d
1) Lets calculate @AXX(t’O)
using

X)) = AX®)+BW()

LAt 0) %E{X(t)XT ()}

dt

_ % vl % 1
= B{ X@® XTor+Ee{X0®) XTw)
AX()+BW (t) XTWH)AT+WT ()BT

ANy (t,0) + Ay (t,0) AT

+BE{W®X" ()} + E{X(t)W' ()} B*



Proof of continuous time results — M2

2) We now need to calculate

BE{W®HXT ()} + E{X&)WT ()BT
using

X)) = MX(0)+ /OteA@—T)BW(T)dT

BE{W®XT#)) = BE{W()X(0)}eA !

B /Ot E{W®W ()BT A (=) gr

61
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Proof of continuous time results — M2

2) We now need to calculate B E{W(®)XT (1)}

usin
J X)) = MX(0)+ /OteA“—T)BW(T)dT

BE{W®HXT(#)} = B E{W(#)X(0)}e!

=0

(4
+B | EWOWT (1)} BT A -4y

ZWW (r)o(t—7)

4
B /O > (7)8(t — 1) B e =Ty

(notice that the Dirac impulse occurs at the edge ¢t)
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Proof of continuous time results — M2
2) Continuing,

- - t
BE{W®XT(®)} = B /O >0 (7)8(t — 1) BTeA =Ty
t T
= B |yt = mo(m)BTe dn
(make integral symmetrical w/r 0)
1 t T
— EB /—t ZWW(t—n)é(n)BTeA "Tdn
AT
________ | | 1 T
ks = SBZww(B
AT
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Proof of continuous time results — M2

2) A similar calculation for E{X®)W! ()} B!
yields

E{X@&W' )BT

et B{X(0)WT ()} BT

—0

t
= —I—/O eA(t_T)B\E{W(T)WT(t)};dTBT

=y (D8 (r—t)

t
= /O AT By ()6(r — t)dr BT

(notice that the Dirac impulse occurs at the edge ¢t)



Proof of continuous time results — M2

2) Continuing,

E{X@)W@)}B

t
/O AT By (1)d(r — t)dr BT

0
/_t e~ By (£)s(n)dn BT

(make integral symmetrical w/r 0)

1
= /_ e Anpgs (£)6(n)dn BT

1
By (1) B!
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Proof of continuous time results — M2

2) Thus

66

BE(W®)XT@®)}+E{Xt)W!®)yBt =B, (t) B!

and

d
DN G(10) = AN(1.0) 4 Ay (£0) A7

+Bx,,,, (t) B!
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Proof of continuous time results — M2
Now we proof that:

Ay o(t,7) = e Ay (t,0) >0

Notice that:

t+7

Rt+71) = AKX + /t A=) BV (n)dn

where,

X ()

X(t) — mx(t)

W(t) — my,(t)

W (t)
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Proof of continuous time results — M2
Therefore,

Ay (t,T) E{X@t+ )X )}

= 7 B X)X (1)}
Ay (£,0)

+ / a eAt+T=
/

B E{W(n)X*(t)}dn

Notice that W(n) and X (t) are uncorrelated for n >t

o (3w BT n=t
E{W ()X~ ()} = «

0 n >t



Proof of continuous time results — M2
Thus,

Ayo(t,7) = A (5,00 7>0
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