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ME 233 Advanced Control II

Continuous time results 1

Random processes

(ME233 Class Notes pp. PR6-PR13)
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Such that for any time        ,

Random Process

A random processes is a continuous function 

of time

Is a random variable defined over the same probability space
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Random process

Let                                         be a collection of times

This is often a huge amount of redundant information

is the joint PDF of

Let                       be a random process
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2nd order statistics

Expected value or mean of X(t), 

Let                          be a random vector process

Auto-covariance function:
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Auto-covariance function

Define:
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Strict Sense Stationary random sequence

is Strict Sense Stationary (SSS) if the joint probability,  is 

invariant with time

A random process

for any time shift T,
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Ergodicity

is ergodic if we can recover an ensemble average

from the time average of any realization:

A Strict Sense Stationary  random process

with probability 1

(almost surely)
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Wide Sense Stationarity

is Wide Sense Stationary (WSS) if:

A random sequence

1) Its mean is time invariant
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Wide Sense Stationarity

is Wide Sense Stationary (WSS) if:

A random sequence

2) Its covariance only depends on the correlation 

shift 
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Wide Sense Stationarity

The auto-covariance function can be defined only as 

a function of the correlation time shift 

Notice that: 
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Cross-covariance function

The cross-covariance function:

Let                                   and                 

be two  WSS random vector processes

for any time t
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Cross-covariance function
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Power Spectral Density Function
For WSS random process, the power spectral density 

function is the Fourier transform of the auto-

covariance function:
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Power Spectral Density Function
Since,
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White noise

A WSS random process                                      is white if:

Where                is the Dirac delta impulse

white noise is zero mean if
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White noise

The power spectral density function for white noise 

is:

Proof:

1
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White noise

0

WW ()

w0

WW (w)

Infinite bandwidth
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White noise vector process

A WSS random vector sequence                                      is 

white if:

where

and                    is the Dirac delta impulse
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MIMO Linear Time Invariant Systems

Let

be the impulse response of an LTI SISO system 

with transfer function
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MIMO Linear Time Invariant Systems

Let                              be WSS

Then the forced response (zero initial state)

is also WSS
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MIMO Linear Time Invariant Systems

We will assume that

• The WSS random process 

is zero mean, I.e.

Thus, the output random process is also zero mean
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MIMO Linear Time Invariant Systems

If

Let                    be WSS

Then:

G(t)

G()
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MIMO Linear Time Invariant Systems

Let                     be a  WSS random process

G(w)

G(s)
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MIMO Linear Time Invariant Systems

Let                     be a  WSS random process

G(s)
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MIMO Linear Time Invariant Systems

If

Let                       be a  WSS vector random 

process

Then:
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MIMO Linear Time Invariant Systems

Proof:

Then:
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MIMO Linear Time Invariant Systems

If

Let                    be   WSS

Then:

G(t)

G()
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MIMO Linear Time Invariant Systems

Let                     be a  WSS random process

G(s)
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MIMO Linear Time Invariant Systems

Proof: Remember that
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MIMO Linear Time Invariant Systems

If

Let                  be WSS

Then:
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MIMO Linear Time Invariant Systems

Proof: Use

and

then
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White noise driven state space systems

Consider a LTI system driven by white noise:
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White noise driven state space systems

Assume that       W(t) is white, but not stationary
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White noise driven state space systems

Assume state Initial Conditions (IC):
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White noise driven state space systems

Taking expectations on the equations above, we obtain:
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White noise driven state space systems

Subtracting the means, 
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White noise driven  covariance propagation

with
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White noise driven covariance propagation

Also,

where:
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White noise driven covariance propagation

Also,

where:
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Stationary  covariance equation

For W(t) WSS,

and A Hurwitz, 
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Stationary  covariance equation

For W(t) WSS,

Satisfies:

and A Hurwitz, 
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The next section contains 

some Proofs of the CT

results

Please go over them by

yourselves…
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Proof of continuous time results – Method 1

We first prove that:

By starting from the Discrete Time (DT) results
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Proof of continuous time results – Method 1

Approximate the state equation ODE

using the Euler numerical integration method.

• We have to be careful in dealing with white 

noise
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Approximate 

1. Define                 as the time average of

Similarly, taking expectations
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Approximate                       for  W(t) white          
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Approximate                       for  W(t) white          

since for  W(t) white Dirac impulse
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Approximate                       for  W(t) white          
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Approximate                       for  W(t) white          
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Where                   is the time average of

Approximate                       for  W(t) white          



54

Numerical Integration

The state equation

By the discrete time state equation

where
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1. Obtain DT state equations by approximating the CT 
state equation solution:

Thus,

where

Proof of continuous time results – Method 1
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Proof of continuous time results – M1

2. Obtain the CT covariance propagation equation from 
from the DT covariance propagation, using the 
approximated DT state equation:
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Proof of continuous time results – M1

3. Take the limit as                     of

and noticing that
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Proof of continuous time results – M1

3. Take the limit as                     of

Thus,

t t



59

Proof of continuous time results – Method 2

We now proof that:

Directly from continuous time (CT) results
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Proof of continuous time results – M2

1) Lets calculate

using 
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Proof of continuous time results – M2

2) We now need to calculate

using
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Proof of continuous time results – M2

2) We now need to calculate

using

(notice that the Dirac impulse occurs at the edge t)
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Proof of continuous time results – M2

2) Continuing,

(make integral symmetrical w/r 0)

0

ΔT

ΔT
1
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Proof of continuous time results – M2

2) A similar calculation for 

yields

(notice that the Dirac impulse occurs at the edge t)



65

Proof of continuous time results – M2

2) Continuing,

(make integral symmetrical w/r 0)
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Proof of continuous time results – M2

2) Thus

and
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Proof of continuous time results – M2

Now we proof that:

Notice that:

where,
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Proof of continuous time results – M2

Therefore,

Notice that           and             are uncorrelated for  

0
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Proof of continuous time results – M2

Thus,


